Master Thesis

Czech

Technical
University
in Prague
F3
Faculty of Electrical Engineering
Department of Cybernetics

The Close Enough Travelling Salesman Problem in polygonal domain

Bc. Lukáš Fanta

Supervisor: RNDr. Miroslav Kulich, Ph.D.
Field of study: Cybernetics and Robotics
Subfield: Cybernetics and Robotics
August 2021

I. Personal and study details

Student's name:	Fanta Lukáš	Personal ID number: 457018	
Faculty / Institute:	Faculty of Electrical Engineering		
Department / Institute: Department of Control Engineering			
Study program:	Cybernetics and Robotics		
Branch of study:	Cybernetics and Robotics		

II. Master's thesis details

Master's thesis title in English:

The Close Enough Travelling Salesman Problem in the polygonal domain

Master's thesis title in Czech:

Close Enough Travelling Salesman Problem v polygonální doméně

Guidelines:

1. Get acquainted with the Close Enough Travelling Salesman Problem (CETSP) and state-of-the-art metaheuristics for routing problems.
2. Design and realize a solver for finding the shortest path between two points and a circle (point-circle-point, PCP).
3. Design and realize a method for the CETSP based on a combination of a PCP solver and the GLNS solver [2].
4. Compare the method with the state-of-the-art.
5. Extend the realized method to the environment with polygonal obstacles.
6. Evaluate experimentally properties of the extended algorithm. Describe and discuss the obtained results.

Bibliography / sources:

[1] Yuepeng Ding, Xiong Xie, Bo Jiang. An Efficient Algorithm for Touring n Circles, MATEC Web Conf. doi: 10.1051/matecconf/201823203027, 2018
[2] Stephen L. Smith, Frank Imeson,GLNS: An effective large neighborhood search heuristic for the Generalized Traveling Salesman Problem, Computers \& Operations Research, Volume 87, Pages 1-19, ISSN 0305-0548,
doi:10.1016/j.cor.2017.05.010, 2017.
[3] Gendreau M., Potvin JY. (eds) Handbook of Metaheuristics. International Series in Operations Research \& Management Science, vol 272. Springer, Cham, 2019
[4] Michael L. Cui, Daniel D. Harabor, and Alban Grastien. Compromise-free pathfinding on a navigation mesh. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI'17). AAAI Press, 496-502, 2017.

Name and workplace of master's thesis supervisor:
RNDr. Miroslav Kulich, Ph.D., Intelligent and Mobile Robotics, CIIRC
Name and workplace of second master's thesis supervisor or consultant:

Date of master's thesis assignment: $29.01 .2021 \quad$ Deadline for master's thesis submission: 13.08.2021
Assignment valid until:
by the end of winter semester 2022/2023

III. Assignment receipt

The student acknowledges that the master's thesis is an individual work. The student must produce his thesis without the assistance of others, with the exception of provided consultations. Within the master's thesis, the author must state the names of consultants and include a list of references.

Acknowledgements

I would like to thank my supervisor RNDr. Miroslav Kulich, Ph.D. for his guidance, advice, patience and warm approach. I also thank my family for their support Ing. Eliška Sirůčková for her helpful advice and very loyal support.

Declaration

I hereby declare that I have completed this thesis on my own and that all the used sources are included in the list of references, in accordance with the Methodological instructions on ethical principles in the preparation of university theses.

In Prague, August 13th, 2021

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré použité informační zdroje v souladu s Metodickým pokynem o dodržováni etických principů při přípravě vysokoškolských závěrečných prací.

V Praze dne 13. 8. 2021

Abstract

Close-Enough Traveling Salesman Problem (CETSP), a variant of well-known Traveling salesman problem (TSP), is one of the important problems in routing and circular tour planning applications, such as automatic meter reading, collecting data in circular regions and searching for sources of gamma radiation. The aim of this thesis was to combine existing algorithms in pursuit of higher quality results obtained in shorter time than previously attained. A novel heuristic method called GLNS-CETSP was proposed. It combines a solver for finding the shortest path between two points and a circle called point-circle-point (PCP) with GLNS, and touring circle problem (TCP) algorithms. Experiments were carried out to test various configurations of GLNS-CETSP. These include mode (fast, medium, slow), initialization heuristics (random_insertion, random, GSOA, and LKH) and two versions of $P C P$ (simplified and precomputed). Additionally, the novel approach was rigorously tested against the state-of-theart metaheuristics. The obtained results showed the GLNS-CETSP in the majority of the cases obtains higher quality results than the state-of-the-art metaheuristics. It was also demonstrated that the GLNS$C E T S P$ is the second fastest algorithm in the majority of cases. However, the computation time significantly increases in instances containing more than 200 circles. In response, a second new algorithm $G S O A+T C P$ was proposed. As the name suggests, it combines growing selforganizing array (GSOA) and TCP algorithms. Although, $G S O A+T C P$ was not able to reach as good results as the GLNSCETSP the combination of two very fast algorithms resulted in very fast and effective method. Adding the TCP to GSOA
improved significantly the quality of results at minimal time cost. Based on the properties of the two new methods, a conclusion has been reached that each of the algorithms should be used in different situation. The $G S O A+T C P$ should be used especially in applications where the computational time is limited and where the instances contain more than 500 circles. The CETSP problem has 4 different variants of which only two have been previously solved by approximation algorithms. GLNS-CETSP was extended to solve the other two types, which contains polygonal obstacles. Therefore, new CETSP instances were generated on four maps (jari-huge, large, potholes and warehouse) with and without polygonal obstacles by proposed generator of CETSP instances.

Keywords: CETSP, TCP, GLNS-CESTP, GLNS, GSOA, point-circle-point

Supervisor: RNDr. Miroslav Kulich, Ph.D.

IMR - Intelligent Mobile Robotics, CIIRC, CTU in Prague, Jugoslávských partyzánů 1580/3, 16000 Praha 6, Dejvice, Czech Republic

Abstrakt

Close-Enough Traveling Salesman Problem (CETSP), varianta dobře známého problému obchodního cestujícího (TSP), je jedním z důležitých problémů při aplikacích zabývajících se trasováním a plánováním cest na oblastech tvaru kružnic. Příklady těchto aplikací jsou následující: automatické odečty elektroměrů, sběr dat v kruhových oblastech a hledání zdrojů gamma záření. Cílem této práce bylo zkombinovat stávající algoritmy za účelem dosažení kvalitnějších výsledků získaných v kratším čase, než bylo dříve dosaženo. Byla navržena nová metoda s názvem GLNS-CETSP, která kombinuje metodu pro nalezení nejkratší cesty mezi dvěma body a kružnicí zvanou bod-kružnice-bod (PCP) s algoritmy GLNS a TCP. Byly provedeny experimenty k otestování různých konfigurací $G L N S$ CETSP. Mezi testované konfigurace patří mód (rychlý, střední, pomalý), inicializační heuristiky (random_insertion, random, GSOA, and LKH) a dvě verze $P C P$. Kromě toho byl nový přístup srovnán S nejmodernějšími metaheuristikami. Naměřené výsledky ukázaly, že GLNS-CETSP ve většině případů dosahuje kvalitnějších výsledků než nejmodernější metaheuristiky. Ukázalo se také, že GLNS-CETSP je ve většině případů druhým nejrychlejším algoritmem. V případech obsahujících více než 200 kruhů se však doba výpočtu výrazně prodlužuje. V reakci na to byl navržen druhý nový algoritmus GSOA+TCP. Jak název napovídá, kombinuje algoritmy GSOA a TCP. Ačkoli $G S O A+T C P$ nebyl schopen dosáhnout tak dobrých výsledků jako GLNS-CETSP, kombinace dvou velmi rychlých algoritmů vedla k velmi rychlé a efektivní metodě. Přidání TCP k GSOA výrazně zlepšilo kvalitu výsledků za minimální časové ztráty. Na
základě vlastností těchto dvou nových metod bylo rozhodnuto, že každý z algoritmů by měl být použit v jiné situaci. $G S O A+T C P$ by měl být používán zejména v aplikacích, kde je výpočetní čas omezený a kde instance obsahují více než 500 kružnic. Problém CETSP má 4 různé varianty, z nichž pouze dvě byly dříve vyřešeny zmíněnými aproximačními algoritmy. GLNS -CETSP byl rozšířen o řešení dalších dvou typů, které doplňují stávající varianty o polygonální překážky. Proto byly vegenerovány nové CETSP instance na mapách (jari-huge, large, potholes and warehouse) s polygonálními překážkami a bez nich pomocí námi vytvořeného generátoru $C E T S P$ instancí.

Klíčová slova: CETSP, TCP, GLNS-CESTP, GLNS, GSOA, bod-kružnice-bod

Překlad názvu: Close Enough Travelling Salesman Problem v polygonální doméně
1 Introduction 1 2
1.1 State of the art
1.1.1 First specification and heuristics to CETSP problem 2
1.1.2 Mixed-integer nonlinear program (MINLP) 4
1.1.3 Steiner Zone heuristic $S Z H$ and CETSP-lib 5
1.1.4 Behdani \& Cole (2014) and CETSP-lib-small 7
1.1.5 Branch-and-Bound $(B \& B) \ldots 8$
1.1.6 Carrabs et al. (2017) 9
1.1.7 F. Carrabs et al. (2017) 10
1.1.8 Growing Self-Organizing Array GSOA 10
1.1.9 Steiner Zone Variable
Neighborhood heuristic (SZVNS) 11
1.1.10 M. Antonescu and C. Bîră (2019) 12
1.1.11 Regression model (RM) 13

Contents

2 Problem specification 15
2.1 Coordinate system 15
2.2 Tour on graph 16
2.3 Circular tour 16
2.4 Traveling Salesman Problem (TSP) 17
2.5 Generalized Traveling Salesman
Problem (GTSP) 18
2.6 Close-Enough Traveling Salesman
Problem (CETSP) 18
3 Solution Approach 21
3.1 Point-circle-point (PCP) 22
3.1.1 Solver framework 23
3.1.2 Points on the line and circle 27
3.1.3 Solving nontrivial case 29
3.2 Touring polygon problem (TPP) 40
3.3 Touring circle problem (TCP) 40
3.3.1 Algorithm description 40
3.4 GLNS algorithm 43

5 Discussion 81
6 Conclusion 83
A Bibliography 85
B Tables of results 89
C Contents of the attached CD 121

Figures

2.1 Examples of solved CETSP
problem and all variants on the map
large. 20
3.1 Scenarios of mutual positions of points a and b and circle C 23
3.2 Position of points a, b and circle C with radius r and center c in the space described by seven parameters 25
3.3 Transformation of points and a circle in space described by seven parameters to space described by three parameters. 27
3.4 Two different mutual positions of line segment $\overline{a b}$ intersecting circle C and found points on $\overline{a b}$ and $C \ldots \ldots$ 29
3.5 Light reflection 30
3.6 Principle of light reflection applied to the PCP problem 30
3.9 Computation of T using TCP algorithm for two different CETSP instances (Bubbles1 and ConcentricCircles1). 42
3.10 An example of found order of circle by $L K H$ algorithm on two CETSP instances Bubbles1 and Bubbles2. 57
3.11 Process of generating two collision free paths path $h_{\text {free }}$ and computing points $a_{\text {new }}$ and $b_{\text {new }}$ on corresponding path $_{\text {free }}$. . 59
3.12 Comparison of found two different $T_{\text {out }}$. The first ignore obstacles and the second tour is reconstructed and avoids the obstacles on the map. . . 59
3.13 An example of process of conversion potholes map61
3.14 All used maps describing the environment with polygonal obstacles 62
4.1 Example of best found solutions on instances with intersected circles . . 79
4.2 Example of best found solutions on instances with disjoint circles..... 80

Tables

4.1 Parameters of GLNS-CETSP for three different modes. Num_circles value is the number of circles in a CETSP instance and \min is function that selects the minimum from two given values.68
4.2 Parameters of three modes of GLNS-GTSP algorithm. Num_circles value is the number of circles in GTSP instance and \min is function that selects the minimum from two given values. 69
4.3 Interval parameters of the three-dimensional table used to precompute parameters of PCP solver. 70
B. 1 Comparison of computationaltimes of three different modes ofGLNS-CETSP. Initial heuristic isGSOA in all cases. The shortest timeis bold for each measured CETSPinstance.89
B. 2 Comparison of found solutions of three different modes of GLNS-CETSP. Initial heuristic is GSOA in all cases. The lowest PDB and PDM values are bold for each measured CETSP instance.90
B. 3 Comparison of computation timeof GLNS-CETSP algorithm for fourinitialize heuristics (random insertion,random, LKH and GSOA). Instancesconsisting of intersected circles withequal-sized radii.
B. 4 Comparison of found solutions by GLNS-CETSP algorithm for four initialize heuristics (random insertion, random, LKH and GSOA). Instances consisting of intersected circles with equal-sized radii.92
B. 5 Comparison of computation time of GLNS-CETSP algorithm for four initialize heuristics (random insertion, random, LKH and GSOA). Instances consisting of intersected circles with arbitrary radii.
B. 6 Comparison of found solutions by GLNS-CETSP algorithm for four initialize heuristics (random insertion, random, LKH and GSOA). Instances consisting of intersected circles with arbitrary radii.94
B. 7 Comparison of computation time of GLNS-CETSP algorithm for four initialize heuristics (random insertion, random, LKH and GSOA). Instances are sorted by three different overlap ratios. 95
B. 8 Comparison of found solutions by GLNS-CETSP algorithm for four initialize heuristics (random insertion, random, LKH and GSOA). Instances are sorted by the three different overlap ratios. 96
B. 9 Comparison of two types of PCP solver as a part of GLNS-CETSP on found results by GLNS-CETSP algorithm with GSOA initialization heuristic. The first one is without precomputation Simplified and the second one is with table of precomputed values Precomputed. Instances consisting of intersected circles with equal-sized radii.
B. 10 Comparison of two types of PCP solver as a part of GLNS-CETSP on computational time of GLNS-CETSP. The first one is without precomputation Simplified and the second one is with table of precomputed values Precomputed. Instances consisting of intersected circles with equal-sized radii.
B. 11 Comparison of two types of PCP solver as a part of GLNS-CETSP on found results by GLNS-CETSP algorithm with GSOA initialization heuristic. The first one is without precomputation Simplified and the second one is with table of precomputed values Precomputed. Instances consisting of intersected circles with arbitrary radii.
B. 12 Comparison of two types of PCP solver as a part of GLNS-CETSP on computational time of GLNS-CETSP. The first one is without precomputation Simplified and the second one is with table of precomputed values Precomputed. Instances consisting of intersected circles with arbitrary radii. 99
B. 13 Comparison of two types of PCP solver as a part of GLNS-CETSP on found results by GLNS-CETSP algorithm with GSOA initialization heuristic. The first one is without precomputation Simplified and the second one is with table of precomputed values Precomputed. Instances consisting of disjoint circles with equal-sized radii
B. 14 Comparison of two types of PCP solver as a part of GLNS-CETSP on computational time of GLNS-CETSP. The first one is without precomputation Simplified and the second one is with table of precomputed values Precomputed. Instances consisting of disjoint circles with equal-sized radii 101
B. 15 Comparison of two types of PCP solver as a part of GLNS-CETSP on found results by GLNS-CETSP algorithm with GSOA initialization heuristic. The first one is without precomputation Simplified and the second one is with table of precomputed values Precomputed. Instances consisting of disjoint circles with arbitrary radii. 102
B. 16 Comparison of two types of PCP solver as a part of GLNS-CETSP on computational time of GLNS-CETSP. The first one is without precomputation Simplified and the second one is with table of precomputed values Precomputed. Instances consisting of disjoint circles with arbitrary radii. 103
B. 17 Comparison of four algorithms (SZ2, GLNS-CETSP, GLNS-GTSP, GSOA) on found best solution. Instances consisting of intersected circles with equal-sized radii. The best found solution for a given instance is highlighted. If the length of the solution is better of equal to the best known solution $\left(L_{\text {opt }}\right)$, the length is highlighted in $L_{o p t}$ column
B. 18 Comparison of computational times of four algorithms (SZ2, GLNS-CETSP, GLNS-GTSP, GSOA). Instances consisting of intersected circles with equal-sized radii. The shortest computational time for a given instance is highlighted.....
B. 19 Comparison of three algorithms (GLNS-CETSP, GLNS-GTSP, GSOA) on found best solution. Instances consisting of intersected circles with arbitrary radii. The best found solution for a given instance is highlighted. If the length of the solution is better of equal to the best known solution ($L_{o p t}$), the length is highlighted in $L_{\text {opt }}$ column. 106
B. 20 Comparison of computational times of three algorithms (GLNS-CETSP, GLNS-GTSP, GSOA). Instances consisting of intersected circles with arbitrary radii. The shortest computational time for a given instance is highlighted. . . 107
B. 21 Comparison of four algorithms (SZ2, GLNS-CETSP, GLNS-GTSP, GSOA) on found best solution. Instances contain only the intersected circles and are sorted by three different overlap ratios. The best found solution for a given instance is highlighted. If the length of the solution is better of equal to the best known solution $\left(L_{o p t}\right)$, the length is highlighted in $L_{\text {opt }}$ column. 108
B. 22 Comparison of computational times of three algorithms
(GLNS-CETSP, GLNS-GTSP, GSOA). Instances contain only the intersected circles and are sorted by three different overlap ratios. The shortest computational time for a given instance is highlighted. . . . 109
B. 23 Comparison of three algorithms (GLNS-CETSP, GLNS-GTSP, GSOA) on found best solution. Instances contain only the disjointed circles with equal-sized radii. The best found solution for a given instance is highlighted. If the length of the solution is better of equal to the best known solution $\left(L_{o p t}\right)$, the length is highlighted in $L_{o p t}$ column.
B. 24 Comparison of computational times of three algorithms (GLNS-CETSP, GLNS-GTSP, GSOA). Instances contain only the disjointed circles with equal-sized radii. The shortest computational time for a given instance is highlighted. 111
B. 25 Comparison of three algorithms
(GLNS-CETSP, GLNS-GTSP,
GSOA) on found best solution.
Instances contain only the disjointed
circles with arbitrary radii. The best
found solution for a given instance is
highlighted. If the length of the
solution is better of equal to the best
known solution $\left(L_{o p t}\right)$, the length is
highlighted in $L_{\text {opt }}$ column. 112
B. 26 Comparison of computational
times of three algorithms
(GLNS-CETSP, GLNS-GTSP,
GSOA). Instances contain only the
disjointed circles with arbitrary radii.
The shortest computational time for
a given instance is highlighted. . . 113
B. 28 Comparison of GLNS-CETSP,
GSOA and GSOA+TCP algorithms
based on the computational time.
Instances with intersecting circles
with equal-sized radii. 115
B. 29 Comparison of GLNS-CETSP,
GSOA and GSOA+TCP algorithms
based on the length of tour.
Instances with intersecting circles
with arbitrary radii. 116
B. 30 Comparison of GLNS-CETSP,
GSOA and GSOA+TCP algorithms
based on the computational time.
Instances with intersecting circles
with arbitrary radii.
117
B. 25 Comparison of three algorithms (GLNS-CETSP, GLNS-GTSP, GSOA) on found best solution. Instances contain only the disjointed circles with arbitrary radii. The best found solution for a given instance is highlighted. If the length of the solution is better of equal to the best known solution ($L_{\text {opt }}$), the length is highlighted in $L_{\text {opt }}$ column. 112
B. 26 Comparison of computational times of three algorithms (GLNS-CETSP, GLNS-GTSP, GSOA). Instances contain only the disjointed circles with arbitrary radii. The shortest computational time for a given instance is highlighted. .. 113

$$
\begin{aligned}
& \text { B. } 27 \text { Comparison of GLNS-CETSP, } \\
& \text { GSOA and GSOA+TCP algorithms } \\
& \text { based on the length of tour. } \\
& \text { Instances with intersecting circles } \\
& \text { with equal-sized radii. } 114
\end{aligned}
$$

B. 28 Comparison of GLNS-CETSP, GSOA and GSOA+TCP algorithms based on the computational time. Instances with intersecting circles with equal-sized radii. 115
B. 29 Comparison of GLNS-CETSP, GSOA and GSOA+TCP algorithms based on the length of tour. Instances with intersecting circles with arbitrary radii.
B. 30 Comparison of GLNS-CETSP, GSOA and GSOA+TCP algorithms based on the computational time. Instances with intersecting circles with arbitrary radii. 117
B. 31 Comparison of GLNS-CETSP, GSOA and GSOA+TCP algorithms based on the computational time. Instances with intersecting circles and sorted based on the overlap ratios. 118
B. 32 Comparison of GLNS-CETSP, GSOA and GSOA+TCP algorithms based on the computational time. Instances with intersecting circles and sorted based on the overlap ratios. 119
B. 33 Results computed by

GLNS-CETSP with simplified PCP solver and GSOA initialization heuristic on four different maps with obstacles: jari-huge, large, potholes, warehouse. Solutions on each map contain the best found tour $L_{o p t}$, its $\% P D M$ value and execution time T in seconds. Instances contain from 50 to 400 disjointed and intersected circles with arbitrary and equal-sized radii. 120

Chapter 1
 Introduction

Travelling Salesman Problem (TSP) is a well-known NP-hard problem with an aim to visit a given set of cities by a salesman while minimizing the length of a traversed tour. The salesman starts and ends at the same location and visits each city exactly once. Close Enough Traveling Salesman Problem (CETSP) is an extension of TSP, where the salesman visits an arbitrary point in the circular area around each city. Both TSP and CETSP are combinatorial optimization problems that play a crucial role in robotic applications. In mobile robotics, examples of usage include monitoring and collecting data in regions [1], [2]. Examples of usage in industrial robotics include optimization of the sequence of robotic tasks [3] and planning time-optimal motions of manipulators [4].

Several algorithms were proposed to solve CETSP, such as Steiner zone heuristic [5], branch-and-bound [6], mixed-integer nonlinear program [7], Growing Self-Organizing Array [8], discrete gravitational search algorithm [9, and regression model to estimate the solution [10]. Some of the algorithms are able to compute the shortest tour possible but only for a small number of cities. For a larger number of cities, these algorithms are computationally demanding making them slow. On the other hand, there are also very fast algorithms, but these generally find worse solutions than the slower algorithms. As a result, this thesis is motivated by the need to solve CETSP even for a larger number of cities in the shortest possible computation time. At the same time, the solution proposed by the thesis will attempt to find better solutions than the already best-found solutions.

The aim of the thesis is to devise a new heuristic method to solve CETSP in
the polygonal domain and evaluate it on existing CETSP datasets. Also, new CETSP instances in the environment with polygonal obstacles are generated and solved. The proposed heuristic method combines three algorithms: point-circle-point $(P C P), G L N S$, and touring circle problem ($T C P$). First, $P C P$ computes a point on the circle that minimizes the sum of distances between the the point and the other two points. GLNS determines a sequence of circles to be visited and a corresponding sequence of points, where each point lies on a different circle from the sequence. The order of circles in the sequence minimizes the length of the tour traversing the sequence of points. Finally, for each circle, $T C P$ computes a point, which minimizes the sum of distances between the consecutive points in the sequence given by $G L N S$.

The following Section 1.1 provides a literature review of CETSP problem. The rest of the thesis is organized as follows. Chapter 2 defines all terms used in the thesis and specifies TSP and CETSP problems. Also, the variants of CETSP problem in the polygonal domain are introduced. Chapter 3 describes in detail the algorithms $P C P, G L N S$ and $T C P$ including their implementation. The process of generation of CETSP instances in the environment with polygonal obstacles is also described. Finally, the experimental setup and results are outlined in Chapter 4.

1.1 State of the art

The CETSP is a combinatorial optimization problem extensively studied in researches with practical applications, such as automatic meter reading using radio frequency identification (RFID), monitoring geographical regions by drones, routing in wireless sensor networks, and optimizing a sequence of robotic tasks in industrial robotics [5], [11. Since the exact solution for this problem can not be found in polynomial time, the approximation algorithms running in a reasonable time are being proposed.

1.1.1 First specification and heuristics to CETSP problem

The CETSP problem was first mentioned by Heath et al. (2006) [11] in an automatic meter reading $(A M R)$ application and was defined as follows. A service team has to visits customers (labeled as nodes) that have RFID transmitter transmitting a signal in a circular area of a radius r. The service team starts and ends in a point called depot and each node can be visited
anywhere in its surrounding circular area. The authors proposed a method to find the shortest tour that visits all nodes and the depot. The method is divided into three consecutive parts:

1. Generate a feasible set of supernodes S (defined in next paragraph) that covers the whole plane with nodes, where each node is distant no more than r from the closest supernode.
2. Find near-optimal TSP tour T on S.
3. Improve tour T, i.e. reduce the distance traveled in T.

A feasible set of supernodes S is determined by six heuristics as follows:

- First three heuristics use variants of the tilling method that initially cover the whole plane with a set of equal-sized regular hexagons, where each hexagon can be inscribed in a circle of a radius r. Regular hexagons were chosen from all types of polygons due to their minimal overlap area. The hexagon centers form a set of supernodes S_{r}, size of which number must be reduced.

The first variant called shifting reduces the number of supernodes by performing a series of small random shifts (vertically or horizontally) of all hexagons at once. The output of each shifting process is a new set of supernodes, where each supernode corresponds to the center of a shifted hexagon that covers at least one node. The set of supernodes with the smallest cardinality is considered to be a feasible set S.
The second variant called merging attempts to merge every two adjacent hexagons on the plane. Assume two adjacent hexagons H_{1}, H_{2} with centers $h_{1}, h_{2} \in S_{r}$ and a point h created as a midpoint on a line segment $\overline{h_{1} h_{2}}$. A new hexagon H with equal size to H_{1} and with the center in h is created. If H covers all nodes that lie in H_{1} or H_{2}, the hexagons H_{1}, H_{2} are merged and only h is considered to be supernode in set S. Otherwise, the centers h_{1}, h_{2} are considered to be supernodes in S.

The third variant, called circular extension replaces the hexagons with circles of radii with the same centers and tries to reduce S_{r} by considering the intersection of the circles. Assume three intersecting circles C_{1}, C_{2} and C_{3}, where C_{2} intersects C_{1} and C_{3}, and C_{1} and C_{3} do not intersect with each other. If all nodes that are covered by C_{2} are located only in the intersect areas with C_{1} or C_{3}, C_{2} is labeled as superfluous and is eliminated, i.e. the center of C_{2} is removed from $S_{r} . S_{r}$ is considered to be feasible S after eliminating all superfluous circles.

1. Introduction ■

- For the second heuristic, assume n intersecting circles. An area where the circles intersect is called Steiner Zone of degree n. Steiner Zone heuristic initially creates equal-sized circles with centers in all nodes. To quickly obtain S, Steiner zones with degrees no more than three are picked as an area suitable for possible supernodes. An arbitrary point in each Steiner zone is considered to be a supernode, and it is saved to S. The process of creating and saving supernodes starts from the Steiner zone with the highest degree and repeats until all nodes are covered with at least one supernode.
- Sweeping Circle heuristic covers the whole plane with overlapping equalsized circles with centers shifted by a given value. The process of choosing supernodes is iterative. In each iteration, the circle with the highest number of nodes, is picked and its center is considered to be a new supernode of S. The process is repeated until all nodes are covered.
- In the last heuristic, node n_{1} is said to be adjacent to node n_{2} if the distance between n_{1} and n_{2} is more than 0 and no more than r. The degree of n_{1} is the number of nodes adjacent to n_{1}. Radial Adjacency heuristic creates S using an iterative process. In each iteration, node n with the highest degree is picked from a set of all available nodes, and the geometric mean of n and all of its adjacent nodes is computed. If the resulting point is adjacent to fewer nodes than n, the node n is considered to be a supernode and is added to S. Otherwise, the point resulting from the computation of the geometric mean is a supernode and node n along with its neighbors is removed from the set of all available nodes.

Near-optimal T on S is found by a non-specified heuristic. The process of improving T is based on minimization of the marginal cost of visiting supernodes in T.

The authors tested the heuristics on seven instances consisting of 100 to 1000 nodes. The results show that the merging tilling and Steiner Zone heuristics are the most effective in the way of shortening the length of tour T. The computation time was not measured.

1.1.2 Mixed-integer nonlinear program (MINLP)

Dong et al. (2007) [12] formulated a mixed-integer nonlinear program (MINLP) for CETSP, but they did not solve it. Furthermore, they proposed two approximation heuristics to find a set of supernodes S on the plane in the $A M R$ application. The first heuristic, called clustering-based is the
same as the merging tilling heuristic. The second heuristic, called convex hull-based finds a set S that covers the whole plane with nodes using an iterative process. The process can be described by the following steps:

1. Depot is added to S.
2. Nodes that lie within the distance r from closest supernode in S are called covered nodes.
3. A convex hull over all noncovered nodes is created by the Quickhull algorithm [13].
4. A centroid O of the convex hull is computed.
5. A set of all vertices of the convex hull is iterated. In each iteration a current vertex is labeled as V and a distance between V and O is measured. If the distance is less than or equal to r, O is a new supernode and added to S. Otherwise, a new point is created on $\overline{V O}$ with distance r from V and considered to be a new supernode.
6. Go to step 2. until all nodes are covered.

The TSP tour T on S is found by the convex hull insertion algorithm, which the authors consider to be an algorithm with a remarkable speed and a surprising accuracy. The process of improving T is done by the simulated annealing algorithm.

The authors constructed and tested 190 cases consisting of 100 to 1000 nodes and their radii from 2 to 20 by 2, i.e., ten different radii. Both heuristics produce good results in a computation time not exceeding 800 milliseconds, which is very fast.

1.1.3 Steiner Zone heuristic SZH and CETSP-lib

Mennell (2009) 5f formulated the MINLP and introduced a new lower bounds $(L B)$ techniques derived from MINLP. Next, the author developed several solvers of the CETSP tour based on the Steiner Zone heuristic (SZH) and generated a set of 62 CETSP instances, which consists of 17 to 1001 circles. We labeled the set of instances as CETSP-lib. CETSP-lib contains a set of seven instances with three different overlap ratios (low, moderate, and high), a set of fourteen instances with circles with random values of radii, and a set
of twenty-seven instances with circles with equal-sized radii. Overlap ratio defines the ratio between the areas where circles overlap and where not.

The author shows that the results of $L B$ techniques for the CETSP problem are very weak, i.e., computed $L B$ values of most instances with moderate and high overlap ratios are equal to zero. The computation process of general $S Z H$ is divided into three phases:

1. The phase called Steiner zone generation generates a set of several suitable disjoint or intersecting Steiner zones on a given instance. For further information on this phase the reader is advised to read chapter 2.4.1 on page 22 of the original article [5].
2. The phase called Tour finding finds a representative point in each Steiner zone and computes TSP tour T on these points. T is computed by Lin-Kernighan heuristic $L K H$ [14], which is considered to be a fast heuristic.
3. The third phase called Tour improvement tries to shorten T by changing positions of points in T. The order of points in T, where each point corresponds to one Steiner zone, is fixed and the position of points in each Steiner zone minimizing the length of T is solved by an algorithm called the Touring polygon problem (TPP) [15]. TPP originally optimizes tour on a sequence of polygons, but the convex regions (Steiner zones) are used in SZH. The author modified TPP to Touring Steiner Zones Problem (TSZP), and proposed two types of solution of TSZP: optimal and near-optimal. The optimal solution is formulated by the secondorder cone program $(S O C P)$ and solved by $C P L E X$ optimizer [16]. The near-optimal solution is found by a heuristic called $I P_{P h I I I}$. Detailed definition can be found on page 261 in the original article [5]. IP $P_{\text {PhIII }}$ solver finds the solution on up to 1001 circles in under 1 second and no more than 1% from the currently shortest length. On the other hand, $C P L E X$ finds the optimal solution on 1000 circles in roughly 6 seconds, which is more than six times slower than $I P_{P h I I I}$.

Moreover, it proposes several variants of $S Z H$.

The variants of $S Z H$ are called $S Z 1$ and $S Z 2$. $S Z 1$ prioritizes the computational speed over the tour length and therefore, uses $I P_{\text {PhIII }}$ solver in the third phase. On the other hand, SZ2 prioritizes the tour length and hence uses the CPLEX solver in the third phase and repeats phases 2 . and 3 . until no improvement of tour length is met. $S Z 1$ and $S Z 2$ were compared with Generalized Traveling Salesman Problem (GTSP) based algorithms
and another 11 heuristics on CETSP-lib. The GTSP-based algorithms use a genetic algorithm (GA) to solve the exactly-one-in-set GTSP problem on an instance with approximated circles. The author tried to approximate the circles by $3,6,12$, and 24 points and determined that only a 24 -points approximation is suitable.

The results show that $S Z 1$ and $S Z 2$ are very fast and provide the best combination of computation time and length of the tour found. Although, GTSP based algorithms find shorter tours than $S Z H$ based heuristics on instances with a low and moderate overlap ratio, the computation time is very slow, taking days or even weeks for larger instances.

1.1.4 Behdani \& Cole (2014) and CETSP-lib-small

Behdani and Smith (2014) [7] approached CETSP problem as problem, where the area around each point is not necessarily a circle and introduced two discretization methods: grid-based and arc-based to approximate the areas. Grid-based discretization method approximates close-enough areas of each point by rectangular cells. Arc-based discretization is intended only for circular areas. Assume a sequence of circles and a convex hull created from the centers of circles in the sequence. Boundaries of circles lying on or inside the convex hull are approximated by points called arc cells.

In addition, the authors generated a new set of 720 CETSP instances consisting of 6 to 30 circles. We labeled the set of instances as CETSP-libsmall due to a small number of circles in each instance. CETSP-lib-small contains instances with three different overlap ratios: low, moderate, and high. Last but not least, three mixed-integer program (MIP) approaches (LB1, LB2, and LB3) were formulated on discretization schemes to find upper and lower bounds on CETSP-lib-small and two alternative formulations (Bender Decomposition ($B D$) and Iterative algorithm ($I A$)) were proposed. $I A$ improves the lower bound found by $L B 1, L B 2$ or $L B 3$. $B D$ significantly improves the solvability of the general formulation of MIP by reformulating the problem as a two-stage problem that is suitable for decomposition. The formulations of $L B 1, L B 2$, and $L B 3$ are solved by CPLEX.

LB1, LB2, and LB3 were tested on instances with 6 circles. In comparison with the other two algorithms, the $L B 2$ has proven to be very slow and has been excluded from further testing. LB1 and LB3 were then tested on instances of up to 10 circles. The tightest lower and upper bounds were found by $L B 3$ in shorter computation time than $L B 1$. $B D$ has been shown to be

1. Introduction

effective for larger instances of 14 to 20 circles. The improving algorithm $I A$ was tested on instances of 12 circles with two different overlap ratios: low and moderate. The upper and lower bounds were found in up to 210 seconds on instances with a low overlap ratio. On the contrary, the 1000 seconds limit was reached in most instances with a moderate overlap ratio. Thus, $I A$ is very time-consuming on instances with moderate or high overlap ratios.

1.1.5 Branch-and-Bound ($B \& B$)

Coutinho et al. (2016) [6] proposed an effective branch-and-bound ($B \& B$) algorithm for the CETSP and compared its results on CETSP-lib and CETSP-lib-small.

Assume that the circular tour T starts and ends in the same position called the depot and visits each circle in the CETSP instance exactly once. The tour $T=\left(T^{C}, T^{P}\right)$, where T^{C} is a sequence of all circles in the CETSP instance and T^{P} is a sequence of points. Partial tour $T_{\text {part }}=\left(T_{p}^{C}, T_{p}^{P}\right)$, where T_{p}^{C} is sub-sequence of T^{C} and T_{p}^{P} is sub-sequence of T^{P}. A set of circles that are not visited by $T_{\text {part }}$ is called uncovered circles.
$B \& B$ algorithm finds the circular tour T with length that represents $L B$ estimate for a given instance and which can be considered to be optimal length of T, if T contains all circles in the instance. The algorithm starts with the initialization of a feasible $T_{p a r t}$ and its T_{p}^{C} consists of three circles that are picked using a method called root relaxation, which will be described later. T_{p}^{P} is found using $C P L E X$ on formulated second order cone program (SOCP) also proposed by Mennell (2009) [5]. Next, the branching process is applied and described by the following steps:

1. A circle from uncovered circles is selected based on one of the two branching rules and placed at each position of T_{p}^{C} in the feasible $T_{\text {part }}$. The first branching rule selects from uncovered circles the circle that is the most distant from the closest line segment created by two consecutive points in $T_{\text {part }}$. The second branching rule inserts each uncovered circle from uncovered circles to the feasible $T_{\text {part }}$ between two closest circles in T_{p}^{C}. A new T_{p}^{P} is computed, the length of $T_{p a r t}$ is determined and the uncovered circle is removed from $T_{\text {part }}$. When the lengths of all $T_{\text {part }}$ are determined, the circle from uncovered circles that maximizes length of $T_{\text {part }}$ is selected. In cases where all circles have the same radii, the first branching rule is applied. Otherwise, the second rule stands.
2. Three new $T_{\text {part }}$ containing T_{p}^{C} are created and their T_{p}^{P} are generated using CPLEX. $T_{\text {part }}$ with the minimal length is picked as new feasible $T_{\text {part }}$.
3. All consecutive points in feasible $T_{\text {part }}$ are connected using a line segment and an area created from these connections is called convex bounding region.
4. If a circle from uncovered circles intersects some line segment in convex bounding region, it is removed from uncovered circles.
5. If uncovered circles is not empty, go to step 1. Otherwise, the branching process is finished and $T_{\text {part }}$ is considered to be T.

Root relaxation method picks the initial circle with radius equal to zero (depot) as a first circle. The circle that is the most distant from depot (based on Euclidian distance measured between the coenters of the circles) is picked as a second circle. The remaining circle with the maximal insertion cost is picked as the third circle. The insertion cost of circle C is the length of $T_{p a r t}$ consisting of the two previously picked circles and C.

The results of the $B \& B$ algorithm were compared with the best results found on CETSP-lib and CETSP-lib-small. B\&B algorithm found a new optimal solution in 22 out of 62 instances of CETSP-lib and improved the $L B$ estimates in the rest of the instances, which were initially computed by Mennell (2009) using MINLP [5]. On the other hand, there was a vast difference in the computation time between instances. The computation time of instances with a high overlap ratio was less than one second. However, the computation time of instances with a low or moderate overlap ratio almost always reached the time limit of four hours. This means, the $B \& B$ algorithm is effective only for instances with a high overlap ratio. Next, the $B \& B$ algorithm is much more effective on CETSP-lib-small because it solves all instances to optimality in no more than two seconds.

1.1.6 Carrabs et al. (2017)

Francesco Carrabs et al. (2017) [17] proposed two new discretization schemes: perimetral and internal that effectively discretize the solution space (boundary of circles). Moreover, they introduced a graph reduction algorithm that significantly reduces the problem size on already discrete solution space and speeds up the computation process. The optimal circular tour T is then computed by solving the GTSP problem on the reduced discrete solution
space. GTSP problem is formulated by MIP and solved by CPLEX. The process of creating a discrete solution space, reduction of discrete space, and computing optimal T is called $U L B$.
$U L B$ was compared with $L B 3, B D$ and $I A$ proposed by Behdani and Smith et al. (2014) [7] in Section 1.1.4. The results show that ULB find tighter lower and upper bounds and much faster than the other algorithms in most instances. Overall, $U L B$ outperforms the other tested algorithms.

1.1.7 F. Carrabs et al. (2017)

F. Carrabs et al. (2017) [18] proposed an improved version of internal discretization scheme, which was initially proposed by the same authors and in the same year. In addition, they proposed a heuristic IULB combining the scheme with SOCP to solve CETSP.
$I U L B$ was compared with $U L B$ and was shown to be an improved version of $U L B$ as $I U L B$ solves 17 instances in less than 100 seconds while during the same time $U L B$ solves only 12 instances.

1.1.8 Growing Self-Organizing Array GSOA

Jan Faigl (2018) [8] introduced unsupervised learning procedure Growing Self-Organizing Array $G S O A$ inspired by Self-Organizing maps $S O M$ [19] to solve TSP and CETSP problems.

Assume a set of circles S that need to be visited and a growing array structure \mathcal{N} initialized with one point (centroid to S). GSOA computes T by an iterative process, where each iteration is called a learning epoch. Each learning epoch can be described by the following steps:

1. A temporal circular tour $T_{t m p}$ encompasses all points from \mathcal{N}.
2. Winner selection and adaptation step randomly iterates through all circles in S and for each determines a winner point $w . w$ is the closest point on $T_{t m p}$ to a given circle. Each w is then adapted towards the corresponding circle and inserted into \mathcal{N}.
3. Solution extraction step removes all not winning points in \mathcal{N}.
$T_{t m p}$ is the new T after completion of all epochs.

GSOA was compared with SZ2 and GTSP-GLNS on CETSP-lib. TSPlib [20] was used for comparison with LKH, Co adaptive Net and ORC-SOM. GTSP-GLNS is exactly-one-in-set GTSP solver and is applied to circles in CETSP instances that are approximated by 24 points. Algorithms ORC-SOM on TSPlib are considered to be the most representative $S O M$-based algorithms for the TSP by the author. The results show that GSOA is very fast because the computation time of the biggest instance consisting of 1001 circles is approximately 0.6 seconds, and the total average of all CETSP-lib instances is approximately 0.1 seconds, which is several orders of magnitude faster than other algorithms. On the contrary, solutions found by GSOA are worse than the best-found solutions in most cases. Therefore, GSOA is recommended to be used only as an initialization tour heuristic for other algorithms.

1.1.9 Steiner Zone Variable Neighborhood heuristic (SZVNS)

Wang et al. (2019) [21] proposed Steiner Zone Variable Neighborhood heuristic (SZVNS) to find circular tour T on CETSP instance CETSP-lib and CETSP-lib-small.

SZVNS works in three phases:

1. Data cleaning phase eliminates redundant circles to reduce the number of circles and improve computation time. When a Steiner zone created by set of circles is inscribed in another circle, the circle is eliminated, because any point from the Steiner zone always lies in this circle.
2. Construction initially creates a set of all Steiner zones from a reduced set of circles using Sweep line algorithm, which effectively finds each subset of circles producing a Steiner zone. Then, the set containing the fewest Steiner zones that cover all circles is selected using Set Covering Problem (SCP). SCP is formulated by Binary Integer Program (BIP) and solved by optimization software Gurobi. Finally, an initial tour T is generated from the optimal set of Steiner zones.
3. Let us define a fixed point in a Steiner zone as Steiner point. Tour improving phase improves T, i.e., shorten length of T if it is possible using TSP solver and Steiner point selection. TSP solver finds a sequence of Steiner zones minimizing T from their Steiner points using the LKH heuristic. Once the sequence is found, Steiner point selection method computes a Steiner point on each Steiner zone, which minimizes the distance between the previous and next points in sequence. The Steiner points can be computed by $S O C P$, but due to its time consumption, the authors applied a greedy algorithm.
$S Z V N S$ is compared with the best results computed by $B \& B$ and ULB algorithms on CETSP-lib-small and the results of all heuristics introduced by Mennell (2009) [5] including SZ1, SZ2, and GTSP based on CETSP-lib. SZVNS found optimal solutions on 94.4% instances of CETSP-lib-small in less than one second in all cases, which is much faster than $B \& B$ and ULB algorithms. In CETSP-lib, SZVNS found the new optimal solutions in 29 out of 62 instances. Total average computation times of SZVNS, SZ2, and GTSP based algorithm are 72,7 , and $1,053,012$ seconds, respectively. The fastest is $S Z 2$, but it has not found as many optimal solutions as $S Z V N S$. Overall, $S Z V N S$ seems to be a very effective solver.

1.1.10 M. Antonescu and C. Bîră (2019)

M. Antonescu and C. Bîră (2019) [9] introduce new TSP and CETSP solvers (DGSA-TSP and DGSA-CETSP) based on discrete gravitational search algorithm ($D G S A$). In addition, two types of rubber band algorithm ($R B A$) are proposed: Bisector RBA and Segment Middle Point RBA. These algorithms are used as a part of DGSA in DGSA-CETSP solver. The main purpose of the RBA algorithm is to improve the circular tour T, i.e., find a point on each circle of the tour that shortens the length of the tour.

The results of DGSA-TSP and DGSA-CETSP were compared with GSOA algorithm introduced by Faigl (2018) of auger engineering radio array (AERA) instances. The authors generated $A E R A$ instances consisting of circles with equal-sized radii. In the case of the TSP problem, the radii are equal to zero, and in the case of the CETSP problem, the radii are equal to 21 and 30 meters. The results show that DGSA-TSP finds the tour slightly shorter than GSOA. On the other hand, DGSA-CETSP generates poor results.

1.1.11 Regression model (RM)

Roy et al. (2021) [10] built a regression model $R M$ to estimate circular tour lengths without generating the actual tour and tested the lengths on CETSP-lib-small. In addition, they generated a new set of 234 instances similar to the already proposed CETSP instances and a new set of 72 larger instances.
$R M$ uses tour lengths computed by $S Z V N S$ heuristic proposed by Wang et al.(2019) [21] to estimate the tour lengths. The results show that the tour lengths computed by $S Z V N S$ can be estimated by $R M$ with eight independent variables with an average error of approximately 4%.

Chapter 2

Problem specification

This chapter opens with an introduction to GLNS and TSP problems that are the basis of this thesis. The basic terms that are necessary to describe these problems are defined. At the end of this chapter, the CETSP problem is defined along with variants of CETSP that this thesis aims to solve.

2.1 Coordinate system

We work in a two-dimensional Cartesian coordinate system to represent the points on the plane. Each point p is uniquely described as $p=\left(p_{x}, p_{y}\right)$, where p_{x} and p_{y} are numerical coordinates.

The distance d between points p and q is computed as the Euclidean distance:

$$
d(p, q)=\sqrt{\left(q_{x}-p_{x}\right)^{2}+\left(q_{y}-p_{y}\right)^{2}}
$$

2.2 Tour on graph

Assume a complete weighted graph $\mathrm{G}=(V, E, w)$, where

- V is a set of (m) vertices defined as $V=\left\{V_{1}, V_{2}, \ldots, V_{m}\right\}$.
- E is a set of paired vertices called edges, i.e. $E \subseteq\{(x, y) \mid(x, y) \in$ V^{2} and $\left.x \neq y\right\}$.
- w is a function assigning weight to each edge: $E \rightarrow \mathbb{R}$.

Finite path P on G is defined as $P=\left(V_{T}, E_{T}\right)$, where V_{T} is a set of n vertices $V_{T}=\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ and E_{T} is a set of $n-1$ edges $E_{T}=\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\} \subseteq$ E that joins consecutive vertices from V_{T}, i.e. $e_{i}=\left(V_{i}, V_{i+1}\right)$. The path P does not have to visit all vertices on G, i.e., $V_{T} \subseteq V$.

Cycle on G is a finite path P that starts and ends in the same vertex. The Hamiltonian path is a finite path P that visits each vertex on G exactly once. The Hamiltonian cycle is a Hamiltonian path that starts and ends in the same vertex [22]. The optimal tour $T=\left(V_{T}, E_{T}\right)$ is a Hamiltonian cycle on G and has a minimal cost defined as:

$$
\operatorname{cost}(T)=\sum_{e \in E_{T}} w(e)
$$

2.3 Circular tour

Assume a set of m circles $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$, where C_{i} is described by its center and radius, i.e., $C_{i}=\left(c_{i}, r_{i}\right)$. The circular tour T of \mathcal{C} describes a cyclic path on a sequence of consecutive circles.

The tour $T=\left(T^{C}, T^{P}\right)$, where

1. $T^{C}=\left(T_{1}^{C}, T_{2}^{C} \ldots, T_{m}^{C}\right)$, where $T_{i}^{C} \in \mathcal{C}$.
2. $T^{P}=\left(T_{1}^{P}, T_{2}^{P} \ldots, T_{m}^{P}\right)$, where p_{i} is a point and lies on the circle $C_{i} \in T^{C}$.

A partial circular tour $T_{\text {part }}=\left(T_{p}^{C}, T_{p}^{P}\right)$, where $T_{p}^{C} \subseteq T^{C}$ and $T_{p}^{P} \subseteq T^{P}$.

The distance dist between two circles $C_{i} \in \mathcal{C}$ and $C_{j} \in \mathcal{C}$ is defined as

$$
\operatorname{dist}\left(C_{i}, C_{j}\right)=d\left(c_{i}, c_{j}\right)-r_{i}-r_{j}
$$

The main metric for measuring the quality of the tour is the tour's length (len). It is computed as a sum of the distances between each two consecutive points in the tour's path:

$$
\operatorname{len}(T)=\sum_{i=1}^{|T|-1} d\left(T_{i}^{P}, T_{i+1}^{P}\right)+d\left(T_{1}^{P}, T_{|T|}^{P}\right)
$$

where $|T|$ is the number of circles in the tour.

2.4 Traveling Salesman Problem (TSP)

Traveling Salesman Problem (TSP) is an NP-hard problem in combinatorial optimization. Let us assume a salesman wants to visit several cities and then come back home. The problem is to arrange the order of cities such that the cost of the tour is minimized [3]. This problem can be modeled as the TSP problem on the graph $G=(V, E, w)$, where V represents cities, E represents the roads between cities and w is a distance function of E .

The optimal TSP tour visiting all cities is the optimal tour T on G.

2. Problem specification
 2.5 Generalized Traveling Salesman Problem (GTSP)

Generalized Traveling Salesman Problem (GTSP) is an extension of the TSP. The variant of the GTSP that we work with is called an exactly-one-in-set GTSP problem. Assume the graph $G=(V, E, w)$ mentioned above and a set of m clusters $\mathcal{S}=\left\{S_{1}, \ldots, S_{m}\right\}$. Each cluster $S_{i} \in \mathcal{S}$ contains a set of n_{i} vertices $S_{i}=\left\{V_{1}, \ldots, V_{n} i\right\}$, where $V_{n} i \in V$.

The GTSP optimal tour T is a cycle on G that visits exactly one node from each cluster and its cost is minimal among all such cycles.

2.6 Close-Enough Traveling Salesman Problem (CETSP)

CETSP is a variant of TSP, where each city is symbolized by a circle area with radius r. The city is considered to have been visited if the salesman is within the city's specified radius (in other words, "the salesman is close enough") [5].

To clarify this problem, we extend the TSP problem described on graph G in a discrete space to a continuous space \mathbb{R}^{2}. More specifically, we search for the optimal circular tour T in a continuous space instead of searching for the tour in a graph G.

This thesis aims to solve the different variants of CETSP problem. These variants are sorted based on their complexity. Each variant inherits constraints from its predecessor and adds other constraints. Specifically:

1. CETSP $P_{\text {dis }}$ is an elementary variant of the CETSP problem containing only disjoint circles with arbitrary-sized or equal-sized radii. The main goal of the search for the optimal circular tour T is to find the correct order of circles in T^{C} and their points in T^{P}.
2. CETSP ${ }_{\text {int }}$ is similar to $C E T S P_{\text {dis }}$ with the exception that the circles are allowed to intersect with each other.
3. CETSP $P_{\text {obst_dis }}$ extends the $C E T S P_{\text {dis }}$ by adding an environment with a set of polygonal obstacles \mathcal{P}. The obstacles must be simple polygons and have to be disjoint. Moreover, the obstacles are not allowed to intersect with the circles that are to be visited.
4. CETSP $P_{\text {obst_int }}$ is an extension of $C E T S P_{\text {obst_dis }}$. The circles are allowed to intersect with each other.

All variants of CETSP problem are solved on the map that specifies the environment. Each map may contain obstacles. CETSP instance is a set of m intersecting or disjoint circles on a map defined as $\mathcal{C}=\left\{C_{1}, \ldots, C_{m}\right\}$, where $C_{i}=\left(c_{i}, r_{i}\right)$ and $C_{i} \in \mathcal{C}$. An example of CETSP problem and of all considered variants shown on Fig. 2.1 on two different CETSP instances placed on the map with and without obstacles. Subfigures (a) and (c) (similarly Subfigures (b) and (d)) produce similar T because the position of circles is the same but the environment differs in the presence of polygonal obstacles highlighted by red color.

(a) : Solution to $C E T S P_{\text {dis }}$ problem on instance called disjoint_50. Total number of circles is 50 and the circles are disjointed and with all with the same radius.

(c) : Solution to CETSP $P_{\text {obst_dis }}$ problem on instance called disjoint_ 50 on the map with obstacles.

(b) : Solution to CETSP int problem on instance called intersect_50. Total number of circles is 50 and the circles are intersected and with all with the same radius.

(d) : Solution to CETSP $P_{\text {obst_int }}$ problem on instance called intersect_50 on the map with obstacles.

Figure 2.1: Examples of solved CETSP problem and all variants on the map large.

Chapter 3

Solution Approach

This thesis aims to solve the CETSP problem and its extension to an environment with polygonal obstacles (i.e., to find circular tour T).

Firstly, let us describe the proposed solvers to the CETSP problem without obstacles. The following algorithms, sorted by increasing complexity, were used to resolve parts of this problem: point-circle-point (PCP), touring polygon problem (TPP), and GLNS. PCP solver finds a point p on the circle C such that the path between p and two points on the map is the shortest. PCP is the basis for the other two more complex algorithms and it is described in Section 3.1.

The general TPP algorithm (Section 3.2) determines a path touring a sequence of polygons. This general algorithm is not sufficient for our problem because we work with circles instead of polygons. Therefore, we modified TPP to find the shortest path on the circular tour T as defined in Section 2.3. Let us name the modified TPP solver TCP (Section 3.3). TCP is able to find an optimal solution to the circular tour T only for a fixed order of circles. Therefore, it is not suitable for solving the general CETSP problem, where the order of circles is not specified.

The optimal order of circles and the optimal path can be found by a modified GLNS algorithm. The original version of the GLNS algorithm (Section 3.4) can solve the GTSP problem. Our modified version called GLNS-CETSP (Section 3.5) determines the optimal path and order of circles in circular tour T. The TCP is used as a part of the optimization process of GLNS for the CETSP problem.

3. Solution Approach

Secondly, we address the CETSP problem with obstacles. This problem extends the CETSP problem by adding polygonal obstacles that need to be avoided into the environment. The previously described algorithms were used to solve this problem. However, with a slight modification, the shortest collision-free path T^{P} needs to be found, i.e., the Euclidean distance between two points on the map can not be used.

3.1 Point-circle-point (PCP)

This section proposes a technique of finding the shortest path between two points a and b through an optimal point p located on a circle C (point-circlepoint PCP). The point p is called optimal if it minimizes the sum of the Euclidean distances between p and a and between p and b. There are four different versions of the scenario with respect to the mutual positions of these points.:

1. Both points a and b are located on C. The optimal point p is located always inside this circle. Fig. 4.2a.
2. One of the points a or b is located inside C. The optimal point p is located on C or inside this circle. Fig. 4.2 d and 4.2 c .
3. The position of points a and b is outside C and line segment $\overline{a b}$ intersects C. The optimal point p is located on C or inside this circle. Fig. 3.1d and 3.1e
4. The position of points a and b is outside C and line segment $\overline{a b}$ does not intersect C. The optimal point p is always located on C. Fig. 3.1f.

The last scenario is nontrivial to solve, while the others are trivial. The following subsections introduce the PCP solver, which provides solutions to the particular cases and an additional technique that improves the computation speed of the solver. Subsection 3.1.1 describes the framework of the solver. Subsection 3.1.2 introduces the computation of points located both on C and $\overline{a b}$, which is used in scenarios 2 and 3. Subsection 3.1.3 describes the solution of the nontrivial scenario.

Figure 3.1: Scenarios of mutual positions of points a and b and circle C

3.1.1 Solver framework

Algorithm 1 describes the $P C P$ solver. The solver's inputs are points a and b and circle C defined by its center point c and radius r. It returns an optimal point p. Using a switch statement (lines 1 -18), the solver is divided into four separate parts, each representing one of the scenarios.

The first part (lines 2-3) corresponds to the first scenario and occurs

```
Algorithm 1: PCP solver
    Input: Points \(a\) and \(b\) and circle \(C\)
    Output: Point \(p\) on circle \(C\)
    switch scenario do
        case 1 do
            \(\mathrm{p} \leftarrow\) compute_mid__point \((\mathrm{a}, \mathrm{b})\);
        case 2 do
            \(\mathrm{p} \leftarrow\) compute_mid__point( \(\mathrm{a}, \mathrm{b}\) );
            if is_not_inside \((p, C)\) then
                    \(a^{z}, b^{z} \leftarrow\) transform_to_zero \((a, b, C)\)
                    \(p^{z} \leftarrow\) point_on_circle_and_line \(\left(a^{z}, b^{z}, C\right)\);
                    \(\mathrm{p} \leftarrow\) transform_from_zero \(\left(p^{z}, C\right)\);
        case 3 do
            \(a^{z}, b^{z} \leftarrow\) transform_to_zero \((a, b, C)\)
            \(p_{1}, p_{2} \leftarrow\) points_on_circle_and_line \(\left(a^{z}, b^{z}, C\right)\);
            \(p^{z} \leftarrow\) compute__mid__point \(\left(p_{1}, p_{2}\right)\);
            \(\mathrm{p} \leftarrow\) transform_from_zero \(\left(p^{z}, C\right)\);
        case 4 do
            \(a_{y}^{t}, b_{x}^{t}, b_{y}^{t}, \alpha \leftarrow \operatorname{transform}(a, b, C)\);
            \(p^{t} \leftarrow \operatorname{solve}\left(a_{y}^{t}, b_{x}^{t}, b_{y}^{t}\right)\); // solving of nontrivial scenario
            \(\mathrm{p} \leftarrow\) inverse_transform \(\left(\alpha, p^{t}, C\right)\);
    return \(p\)
```

when both points a and b are inside C. The point p can be located on any position of the line segment $\overline{a b}$. In case of simplification of the computation process, we always compute p in the middle of the line segment $\overline{a b}$ as follows:

$$
\begin{equation*}
p=\left(\frac{a_{x}+b_{x}}{2}, \frac{a_{y}+b_{y}}{2}\right) \tag{3.1}
\end{equation*}
$$

The second part (lines $4-9$) occurs, when the either a or b is inside C while the other point is outside C. If so, the point p is placed in the middle of $\overline{a b}$ and its position is checked. If p is inside C, the result is saved and returned. Otherwise, a new p equal to the position, where $\overline{a b}$ intersects C need to be computed. In the first step, points a, b and C are shifted so that c is in the origin. The new shifted points are labeled as a^{z} and b^{z} (line 7). Next, the p^{z} is computed as described in detail in Section 3.1.2. The computed p^{z} is finally shifted back using the original c and a resulting point p is assigned to the solver's output.

The third part (lines 10-14) occurs, when $\overline{a b}$ intersects C. Let us define points p_{1} and p_{2} as points located on both C and $\overline{a b}$. The point p can be located anywhere on line segment $\overline{p_{1} p_{2}}$, i.e, p can be located on or inside C. To simplify the computation process, we consider p as a middle point on $\overline{p_{1} p_{2}}$, which is closest to the center of C. The computation process is described by the following steps:

1. Points a, b and C are shifted to center c to the origin (line 11).
2. Points p_{1} and p_{2} are computed using shifted points a^{z}, b^{z} and C (line 12). Section 3.1 .2 describes the computation process in detail.
3. Point p^{z} is computed as a middle point on line segment $\overline{p_{1} p_{2}}$ (line 13).
4. p^{z} is shifted back using the original c and resulting p is assigned to the solver's output (line 14).

The fourth part (lines 15-19) corresponds to the last scenario. General position of points a and b and circle C in the space is described by seven parameters $\left(a_{x}, a_{y}, b_{x}, b_{y}, c_{x}, c_{y}, r\right)$, where c_{x} and c_{y} are the coordinates of center c of C and r is its radius. Example of the general position of points a, b and the circle C is shown on Fig. 3.2.

Figure 3.2: Position of points a, b and circle C with radius r and center c in the space described by seven parameters

To simplify the computation, we can transform this space to a space that is described by three parameters (a_{y}, b_{x}, b_{y}), by moving the circle center to the origin O, scaling to unit radius and rotating so that a lies on the y-axis. The transformation process (line 16) is shown on Fig. 3.3 and described as follows:

1. Points a and b are shifted by c (Fig. 3.3a):

$$
a^{f}=\left(a_{x}^{f}, a_{y}^{f}\right)=\left(a_{x}-c_{x}, a_{y}-c_{y}\right) ;
$$

$$
b^{f}=\left(b_{x}^{f}, b_{y}^{f}\right)=\left(b_{x}-c_{x}, b_{y}-c_{y}\right)
$$

2. Points a^{f} and b^{f} are scaled by $1 / r$ (Fig. 3.3b):

$$
\begin{gathered}
a^{s}=\left(a_{x}^{s}, a_{y}^{s}\right)=\left(\frac{a_{x}^{f}}{r}, \frac{a_{y}^{f}}{r}\right) \\
b^{s}=\left(b_{x}^{s}, b_{y}^{s}\right)=\left(\frac{b_{x}^{f}}{r}, \frac{b_{y}^{f}}{r}\right)
\end{gathered}
$$

3. Angle α between half-line $\overrightarrow{\mathrm{Oa}^{\mathrm{s}}}$ and y-axis is computed using function \arctan (Fig. 3.3 c):

$$
\alpha=\arctan \left(\overrightarrow{\mathrm{Oa}^{\mathrm{s}}}, y-a x i s\right)
$$

4. The resulting points a^{t} and b^{t} are computed by rotating points a^{s} and b^{s} about α (Fig. 3.3d):

$$
\begin{gathered}
a^{t}=\left(a_{x}^{t}, a_{y}^{t}\right)=\left(0, \sin (\alpha) \cdot a_{x}^{s}+\cos (\alpha) \cdot a_{y}^{s}\right) \\
b^{t}=\left(b_{x}^{t}, b_{y}^{t}\right)=\left(\cos (\alpha) \cdot b_{x}^{s}-\sin (\alpha) \cdot b_{y}^{s}, \sin (\alpha) \cdot b_{x}^{s}+\cos (\alpha) \cdot b_{y}^{s}\right)
\end{gathered}
$$

Point p^{t} is then computed by the solver described in Section 3.1.3 and p is determined using inverse transformation function (line 18) from p^{t}, C_{p} and α as follows:

1. Point p^{r} is computed by rotating point p^{t} about $-\alpha$:

$$
p^{r}=\left(p_{x}^{r}, p_{y}^{r}\right)=\left(\cos (-\alpha) \cdot p_{x}^{t}-\sin (-\alpha) \cdot p_{y}^{t}, \sin (-\alpha) \cdot p_{x}^{t}+\cos (-\alpha) \cdot p_{y}^{t}\right)
$$

2. p^{r} is multiplied by r :

$$
p^{s}=\left(p_{x}^{s}, p_{y}^{s}\right)=\left(p_{x}^{r} \cdot r, p_{y}^{r} \cdot r\right)
$$

3. The resulting point p is computed by shifting p^{s} about c :

$$
p=\left(p_{x}, p_{y}\right)=\left(p_{x}^{s}+c_{x}, p_{y}^{s}+c_{y}\right)
$$

(a): General points and the circle C shifted by center of circle c. The center of C is at the origin.

(c) : Computed angle α between halfline $\overrightarrow{\mathrm{Oa}^{\mathrm{s}}}$ and y-axis.

(b) : Shifted points and C scaled by $1 / r$. The radius of circle C is equal to 1.

Figure 3.3: Transformation of points and a circle in space described by seven parameters to space described by three parameters.

3.1.2 Points on the line and circle

This section describes the computation of points on the line segment $\overline{a b}$ that intersects circle $C=(c, r)$, where c lies in the origin of the coordinate system $(0,0)$. Let us formulate a point p by the parametric line equation of the direction vector $\overrightarrow{a b}$ and point a :

$$
\begin{equation*}
p=\left(p_{x}, p_{y}\right)=\left(a_{x}+t \cdot\left(b_{x}-a_{x}\right), a_{y}+t \cdot\left(b_{y}-a_{y}\right)\right) \tag{3.2}
\end{equation*}
$$

where t is scalar value. To compute t, we use the equation of the circle described by point p :

$$
\begin{equation*}
p_{x}^{2}+p_{y}^{2}=r^{2} \tag{3.3}
\end{equation*}
$$

By substituting Eq. 3.2 into equation of a circle, we get

$$
\begin{equation*}
\left(a_{x}+t \cdot b_{x}-t \cdot a_{x}\right)^{2}+\left(a_{y}+t \cdot b_{y}-t \cdot a_{y}\right)^{2}=r^{2} \tag{3.4}
\end{equation*}
$$

By separating the variable t and solving Eq. 3.4 , we obtain two solutions t_{1} and t_{2} of t as follows:

$$
\begin{align*}
& t_{1}=\frac{n \cdot m-a_{x} b_{x}-a_{y} b_{y}+a_{x}^{2}+a_{y}^{2}}{q} \tag{3.5}\\
& t_{2}=-\frac{n \cdot m+a_{x} b_{x}+a_{y} b_{y}-a_{x}^{2}-a_{y}^{2}}{q} \tag{3.6}
\end{align*}
$$

Where n, m and q are:

$$
\begin{gather*}
n=\sqrt{-a_{x}{ }^{2} b_{y}{ }^{2}+a_{x}{ }^{2} r^{2}+2 a_{x} a_{y} b_{x} b_{y}-2 a_{x} b_{x} r^{2}} \tag{3.7}\\
m=\sqrt{-a_{y}{ }^{2} b_{x}{ }^{2}+{a_{y}}^{2} r^{2}-2 a_{y} b_{y} r^{2}+b_{x}{ }^{2} r^{2}+b_{y}{ }^{2} r^{2}} \tag{3.8}\\
 \tag{3.9}\\
q=a_{x}{ }^{2}-2 a_{x} b_{x}+a_{y}{ }^{2}-2 a_{y} b_{y}+b_{x}{ }^{2}+b_{y}{ }^{2}
\end{gather*}
$$

By substituting t_{1} and t_{2} into equation of p (Eq. 3.2), we get two points p_{1} and p_{2} that lie on C and line $\overleftrightarrow{a b}$

$$
\begin{equation*}
p_{1}=\left(p_{x}, p_{y}\right)=\left(a_{x}+t_{1} \cdot\left(b_{x}-a_{x}\right), a_{y}+t_{1} \cdot\left(b_{y}-a_{y}\right)\right) \tag{3.10}
\end{equation*}
$$

$$
\begin{equation*}
p_{2}=\left(p_{x}, p_{y}\right)=\left(a_{x}+t_{2} \cdot\left(b_{x}-a_{x}\right), a_{y}+t_{2} \cdot\left(b_{y}-a_{y}\right)\right) \tag{3.11}
\end{equation*}
$$

There are two different mutual positions of line segment $\overline{a b}$ and C that affect the number of points located both on C and $\overline{a b}$:

1. One of the points a, b is located inside C. Exactly one point $p\left(p_{1}\right.$ or $\left.p_{2}\right)$ is located both on C and $\overline{a b}$. The value of parameter t decides which p will be located on $\overline{a b}$ as only one of the parameters t_{1} or t_{2} is equal to a value in range $[0,1]$. Fig. 3.4 a shows an example, where point a is inside C and the point p_{1} is the only point lying on both C and $\overline{a b}$.
2. Both points a and b are located outside C. Both points p_{1} and p_{2} are located on both C and $\overline{a b}$. An example is shown on Fig. 3.4b.

Figure 3.4: Two different mutual positions of line segment $\overline{a b}$ intersecting circle C and found points on $\overline{a b}$ and C.

3.1.3 Solving nontrivial case

The PCP solver of the nontrivial case aims to compute an optimal point $p=\left(p_{x}, p_{y}\right)$ located on the circle $C=((0,0), 1)$, while $a=\left(0, a_{y}\right)$ and $b=\left(b_{x}, b_{y}\right)$ are located outside C, i.e., the space described by three parameters is used. The solver minimizes the distances between p and a and between b and p.

The main idea is based on the light reflection theory, specifically on Snell's law that defines the reflection of light with the following equation [23]:

$$
\begin{equation*}
n_{1} \sin \left(\beta_{1}\right)=n_{2} \sin \left(\beta_{2}\right) \tag{3.12}
\end{equation*}
$$

3. Solution Approach

Where n_{1} is the incident index, n_{2} is the refracted index, β_{1} is incident angle and β_{2} is the refracted angle. Let us suppose the situation depicted in Fig. 3.5, where the incident and refracted light ray is on the same side of the medium M, i.e., $n_{1}=n_{2}$. We get $\beta_{1}=\beta_{2}$.

Figure 3.5: Light reflection
According to the following lemma, which is proved in Chou et al. (2008) [23], we are able to find the shortest path using light reflection.

Lemma: With the incident angle β_{1} equal to the reflection angle β_{2}, the length of traversal path along the line segments $\overline{a p}$ and $\overline{p b}$ is the shortest path.

Assume a new point $a^{*}=\left(a_{x}^{*}, a_{y}^{*}\right)$, which is the mirroring of a in line M. Line segment $\overline{a p}$ has the same length as line segment $\overline{a^{*} p}$, which can be described by the following equation:

$$
\begin{equation*}
\sqrt{\left(a_{x}-p_{x}\right)^{2}+\left(a_{y}-p_{y}\right)^{2}}=\sqrt{\left(a_{x}^{*}-p_{x}\right)^{2}+\left(a_{y}^{*}-p_{y}\right)^{2}} \tag{3.13}
\end{equation*}
$$

Figure 3.6: Principle of light reflection applied to the PCP problem

By applying the principle of light reflection to the PCP problem, we get into the situation depicted in Fig. 3.6, where M is the tangent line to C and θ is an angle that determines p using polar coordinates as follows:

$$
\begin{equation*}
p=\left(p_{x}, p_{y}\right)=(\cos (\theta), \sin (\theta)) . \tag{3.14}
\end{equation*}
$$

Point a^{*} can be expressed by a parametric equation as a point lying on a line segment passing through a with slope corresponding to point p. The line segment $\overline{a^{*} a}$ is parallel to $\overline{c p}$.

$$
\begin{equation*}
a_{x}^{*}=a_{x}+t \cdot p_{x}, \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{y}^{*}=a_{y}+t \cdot p_{y} \tag{3.16}
\end{equation*}
$$

where t is a scalar value parameter of the equation. Parameter t is computed by substituting a^{*} into Eq. 3.13.

$$
\begin{equation*}
\left(a_{x}-p_{x}+p_{x} t\right)^{2}+\left(a_{y}-p_{y}+p_{y} t\right)^{2}-\left(a_{x}-p_{x}\right)^{2}-\left(a_{y}-p_{y}\right)^{2}=0 . \tag{3.17}
\end{equation*}
$$

By rearranging the formula, we get:

$$
\begin{equation*}
t=2-2 \cdot \frac{a_{x} p_{x}+a_{y} p_{y}}{p_{x}{ }^{2}+p_{y}{ }^{2}}=\frac{2 p_{x}{ }^{2}+2 p_{y}{ }^{2}-2 a_{x} p_{x}-2 a_{y} p_{y}}{p_{x}{ }^{2}+p_{y}{ }^{2}} . \tag{3.18}
\end{equation*}
$$

By assuming only three parameters, we can simplify Eq. 3.15 and 3.18 as

$$
\begin{equation*}
a_{x}^{*}=t \cdot p_{x}, \tag{3.19}
\end{equation*}
$$

$$
\begin{equation*}
t=\frac{2 p_{x}{ }^{2}+2 p_{y}{ }^{2}-2 a_{y} p_{y}}{p_{x}{ }^{2}+p_{y}{ }^{2}} . \tag{3.20}
\end{equation*}
$$

Eq. 3.16, 3.19 and 3.20 are derived equations of a^{*}. Since a^{*}, p and b are collinear, the line segments $\overline{a^{*} p}$ and $\overline{p b}$ are collinear as well and we get

$$
\begin{equation*}
\frac{p_{y}-a_{y}^{*}}{p_{x}-a_{x}^{*}}=\frac{p_{y}-b_{y}}{p_{x}-b_{x}} . \tag{3.21}
\end{equation*}
$$

Eq. 3.21 can be substituted by a^{*} with parameter t as:

$$
\begin{equation*}
\frac{p_{y}-a_{y}-p_{y} \cdot t}{p_{x}-p_{x} \cdot t}=\frac{b_{y}-p_{y}}{b_{x}-p_{x}} \equiv t \cdot\left(b_{x} p_{y}-b_{y} p_{x}\right)=b_{x} p_{y}-b_{x} a_{y}+p_{x} a_{y}-p_{x} b_{y} \tag{3.22}
\end{equation*}
$$

We can substitute p in the form of polar coordinates Eq. 3.14 into Eq. 3.22:

$$
\begin{equation*}
t \cdot\left(b_{x} \sin (\theta)-b_{y} \cos (\theta)\right)=b_{x} \sin (\theta)-b_{x} a_{y}+a_{y} \cos (\theta)-b_{y} \cos (\theta) \tag{3.23}
\end{equation*}
$$

To improve the readability of the equations, we create expressions from sin and $\sin ^{2}$ functions as follows:

$$
\begin{gather*}
z=\sin ^{2}(\theta)=1-\cos ^{2}(\theta) \tag{3.24}\\
\sqrt{z}=\sin (\theta)=\sqrt{1-\cos ^{2}(\theta)} \tag{3.25}
\end{gather*}
$$

Eq. 3.23 and parameter t (Eq. 3.20) can be simplified using parameter \sqrt{z} as

$$
\begin{gather*}
t \cdot\left(b_{x} \sqrt{z}-b_{y} \cos (\theta)\right)=b_{x} \sqrt{z}-b_{x} a_{y}+a_{y} \cos (\theta)-b_{y} \cos (\theta), \tag{3.26}\\
t=\frac{2 \cos ^{2}(\theta)+2-2 \cos ^{2}(\theta)-2 a_{y} \sqrt{z}}{\cos ^{2}(\theta)+1-\cos ^{2}(\theta)}=2-2 a_{y} \sqrt{z} . \tag{3.27}
\end{gather*}
$$

Since t is simplified Eq. 3.27 , we can substitute it into Eq. 3.26 and we obtain

$$
\begin{equation*}
b_{x} \sqrt{z}+2 a_{y} b_{y} \cos (\theta) \sqrt{z}=b_{x} a_{y}+a_{y} \cos (\theta)+b_{y} \cos (\theta)-2 b_{x} a_{y} \cos ^{2}(\theta) . \tag{3.28}
\end{equation*}
$$

By substituting parameter \sqrt{z} Eq. 3.25 into Eq. 3.28 as

$$
\begin{align*}
& b_{x} \sqrt{1-\cos ^{2}(\theta)}+2 a_{y} b_{y} \cos (\theta) \sqrt{1-\cos ^{2}(\theta)}= \tag{3.29}\\
& b_{x} a_{y}+a_{y} \cos (\theta)+b_{y} \cos (\theta)-2 b_{x} a_{y} \cos ^{2}(\theta)
\end{align*}
$$

we obtained the equation with three requested parameters $\left(a_{y}, b_{x}, b_{y}\right)$ and parameter θ to compute. To remove the square root, we square the equation and obtain

$$
\begin{align*}
& -4 a_{y}{ }^{2} b_{y}{ }^{2} \cos ^{4}(\theta)+4 a_{y}{ }^{2} b_{y}{ }^{2} \cos ^{2}(\theta)-4 a_{y} b_{x} b_{y} \cos ^{3}(\theta) \\
& +4 a_{y} b_{x} b_{y} \cos (\theta)-b_{x}{ }^{2} \cos ^{2}(\theta)+b_{x}{ }^{2}= \\
& +4 a_{y}{ }^{2} b_{x}{ }^{2} \cos ^{4}(\theta)-4 a_{y}{ }^{2} b_{x}{ }^{2} \cos ^{2}(\theta)+a_{y}{ }^{2} b_{x}{ }^{2}-4 a_{y}{ }^{2} b_{x} \cos ^{3}(\theta) \\
& +2 a_{y}{ }^{2} b_{x} \cos (\theta)+a_{y}{ }^{2} \cos ^{2}(\theta)-4 a_{y} b_{x} b_{y} \cos ^{3}(\theta)+2 a_{y} b_{x} b_{y} \cos (\theta) \\
& +2 a_{y} b_{y} \cos ^{2}(\theta)+b_{y}{ }^{2} \cos ^{2}(\theta) \tag{3.30}
\end{align*}
$$

By rearranging the equation, we get the final polynomial of degree four of variable $\cos (\theta)$.

$$
\begin{align*}
& 4\left(a_{y}^{2}{b_{x}}^{2}+{a_{y}}^{2}{b_{y}}^{2}\right) \cos ^{4}(\theta) \\
& -4\left({a_{y}}^{2} b_{x}\right) \cos ^{3}(\theta) \\
& +\left(-4{a_{y}}^{2} b_{x}^{2}-4{a_{y}}^{2}{b_{y}}^{2}+{a_{y}}^{2}+2 a_{y} b_{y}+b_{x}^{2}+b_{y}^{2}\right) \cos ^{2}(\theta) \tag{3.31}\\
& +2\left(a_{y}^{2} b_{x}-a_{y} b_{x} b_{y}\right) \cos (\theta) \\
& +\left(a_{y}^{2} b_{x}^{2}-b_{x}^{2}\right)=0
\end{align*}
$$

The following are the four solutions of the polynomial:

$$
\cos (\theta)=\left\{\begin{array}{l}
\frac{1}{4} z+n-k \sqrt{q+t} \tag{3.32}\\
\frac{1}{4} z+n+k \sqrt{q+t} \\
\frac{1}{4} z-n-k \sqrt{q-t} \\
\frac{1}{4} z-n+k \sqrt{q-t}
\end{array}\right.
$$

where z, n, t, q and k are

$$
\begin{gather*}
z=\frac{4 a_{y}^{2} b_{x}}{a b} \tag{3.33}\\
n=\frac{\sqrt{m}}{6 l^{1 / 6}} \tag{3.34}
\end{gather*}
$$

$$
\begin{equation*}
t=3 \sqrt{6} h \sqrt{2 g^{3}-72 f g+27 h^{2}+3 \sqrt{3} \mathrm{ch}} \tag{3.35}
\end{equation*}
$$

$$
q=-12 f \sqrt{m}-g^{2} \sqrt{m}-9 l^{2 / 3} \sqrt{m}-12 g l^{1 / 3} \sqrt{m}
$$

$$
k=\frac{1}{6 l^{1 / 6} m^{1 / 4}}
$$

Parameters $a b, c, d, e, f, g, h, c h, l$ and m are computed as:

$$
\begin{equation*}
a b=4 a_{y}^{2} b_{x}^{2}+4 a_{y}^{2} b_{y}^{2} \tag{3.38}
\end{equation*}
$$

$$
\begin{equation*}
c=-4{a_{y}}^{2}{b_{x}}^{2}-4{a_{y}}^{2}{b_{y}}^{2}+{a_{y}}^{2}+2 a_{y} b_{y}+{b_{x}}^{2}+{b_{y}}^{2} \tag{3.39}
\end{equation*}
$$

$$
\begin{equation*}
d=2 a_{y}^{2} b_{x}-2 a_{y} b_{x} b_{y} \tag{3.40}
\end{equation*}
$$

$$
\begin{equation*}
e=a_{y}^{2} b_{x}^{2}-b_{x}^{2} \tag{3.41}
\end{equation*}
$$

$$
\begin{equation*}
f=\frac{e}{\mathrm{ab}}-\frac{3 z^{4}}{256}+\frac{c z^{2}}{16 \mathrm{ab}}+\frac{d z}{4 \mathrm{ab}} \tag{3.42}
\end{equation*}
$$

$$
\begin{equation*}
g=\frac{c}{\mathrm{ab}}-\frac{3 z^{2}}{8} \tag{3.43}
\end{equation*}
$$

$$
\begin{equation*}
h=\frac{d}{\mathrm{ab}}-\frac{z^{3}}{8}+\frac{c z}{2 \mathrm{ab}} \tag{3.44}
\end{equation*}
$$

$c h=\sqrt{-256 f^{3}+128 f^{2} g^{2}-16 f g^{4}-144 f g h^{2}+4 g^{3} h^{2}+27 h^{4}}$

Since $\cos (\theta)=\cos (-\theta)$, we have

$$
\cos (-\theta)=\left\{\begin{array}{l}
\frac{1}{4} z+n-k \sqrt{q+t} \tag{3.48}\\
\frac{1}{4} z+n+k \sqrt{q+t} \\
\frac{1}{4} z-n-k \sqrt{q-t} \\
\frac{1}{4} z-n+k \sqrt{q-t}
\end{array}\right.
$$

By deriving θ from Eq. 3.32 and 3.48 , we obtain the following eight solutions of θ :

$$
\theta=\left\{\begin{array}{l}
\theta_{1}=\cos ^{-1}\left(\frac{1}{4} z+n-k \sqrt{q+t}\right) \tag{3.49}\\
\theta_{2}=-\cos ^{-1}\left(\frac{1}{4} z+n-k \sqrt{q+t}\right) \\
\theta_{3}=\cos ^{-1}\left(\frac{1}{4} z+n+k \sqrt{q+t}\right) \\
\theta_{4}=-\cos ^{-1}\left(\frac{1}{4} z+n+k \sqrt{q+t}\right) \\
\theta_{5}=\cos ^{-1}\left(\frac{1}{4} z-n-k \sqrt{q-t}\right) \\
\theta_{6}=-\cos ^{-1}\left(\frac{1}{4} z-n-k \sqrt{q-t}\right) \\
\theta_{7}=\cos ^{-1}\left(\frac{1}{4} z-n+k \sqrt{q-t}\right) \\
\theta_{8}=-\cos ^{-1}\left(\frac{1}{4} z-n+k \sqrt{q-t}\right)
\end{array}\right.
$$

By substitution of θ into polar form of p (Eq. 3.14), we obtain eight final solutions of p :

$$
\begin{align*}
& p_{1}=\left\{\begin{array}{l}
p_{x}=\frac{1}{4} z+n-k \sqrt{q+t} \\
p_{y}=\sqrt{1-\left(\frac{1}{4} z+n-k \sqrt{q+t}\right)^{2}}
\end{array}\right. \tag{3.50}\\
& p_{2}=\left\{\begin{array}{l}
p_{x}=\frac{1}{4} z+n-k \sqrt{q+t} \\
p_{y}=-\sqrt{1-\left(\frac{1}{4} z+n-k \sqrt{q+t}\right)^{2}}
\end{array}\right. \tag{3.51}\\
& p_{3}=\left\{\begin{array}{l}
p_{x}=\frac{1}{4} z+n+k \sqrt{q+t} \\
p_{y}=\sqrt{1-\left(\frac{1}{4} z+n+k \sqrt{q+t}\right)^{2}}
\end{array}\right. \tag{3.52}\\
& p_{4}=\left\{\begin{array}{l}
p_{x}=\frac{1}{4} z+n+k \sqrt{q+t} \\
p_{y}=-\sqrt{1-\left(\frac{1}{4} z+n+k \sqrt{q+t}\right)^{2}}
\end{array}\right. \tag{3.53}
\end{align*}
$$

$$
\begin{align*}
& p_{5}=\left\{\begin{array}{l}
p_{x}=\frac{1}{4} z-n-k \sqrt{q-t} \\
p_{y}=\sqrt{1-\left(\frac{1}{4} z-n-k \sqrt{q-t}\right)^{2}}
\end{array}\right. \tag{3.54}\\
& p_{6}=\left\{\begin{array}{l}
p_{x}=\frac{1}{4} z-n-k \sqrt{q-t} \\
p_{y}=-\sqrt{1-\left(\frac{1}{4} z-n-k \sqrt{q-t}\right)^{2}}
\end{array}\right. \tag{3.55}\\
& p_{7}=\left\{\begin{array}{l}
p_{x}=\frac{1}{4} z-n+k \sqrt{q-t} \\
p_{y}=\sqrt{1-\left(\frac{1}{4} z-n+k \sqrt{q-t}\right)^{2}}
\end{array}\right. \tag{3.56}\\
& p_{8}=\left\{\begin{array}{l}
p_{x}=\frac{1}{4} z-n+k \sqrt{q-t} \\
p_{y}=-\sqrt{1-\left(\frac{1}{4} z-n+k \sqrt{q-t}\right)^{2}}
\end{array}\right. \tag{3.57}
\end{align*}
$$

The computed points p are visualized in Fig. 3.7, where the red line highlights the distance from a and b to the closest p (p_{1} in this case). This p_{1} is considered to be the optimal point p.

Figure 3.7: Eight computed solutions of point p by PCP solver
The solutions (Eq. $3.50-3.57$) are inspired by the solutions proposed by Chou (2008) [23]. Initially, the equations (12-24) in the original paper were used to solve the nontrivial case. However, these equations contain several transcription errors that prevent the PCP from working correctly. Moreover,

3. Solution Approach

five parameters $\left(a_{x}, a_{y}, b_{x}, b_{y}, r\right)$ are used in the original solution instead of three parameters $\left(a_{y}, b_{x}, b_{y}\right)$.

Precomputed solution

The previous equations allow us to compute approximately 22900 PCP problems per second as the experimental results show. Although the number of PCP problems is high, we want to make the computation process even faster due to its frequent usage in the complex algorithms (GLNS-CETSP and TCP). One of the possible solutions is to precompute a three-dimensional table of solutions of p for given ranges of three parameters $\left(a_{y}, b_{x}, b_{y}\right)$. The table can be precomputed only once at the beginning of the program or stored in the file and loaded to program memory on demand.

The process of precomputation can be divided into two separate phases: storing values and loading values. The first phase can be described by the following steps:

1. The three-dimensional table $\mathbb{R}^{n \times m \times k}$ is created. Each dimension corresponds to parameter's range of values.
2. Point b is converted from Cartesian representation of points $\left(b_{x}^{t}, b_{y}^{t}\right)$ to polar representation of points (s, ϕ), i.e., the parameters $\left(a_{y}, b_{x}, b_{y}\right)$ are converted into $\left(a_{y}, s, \phi\right)$.

$$
\begin{gather*}
s=\sqrt{b_{x}^{2}+b_{y}^{2}} \tag{3.58}\\
\phi=\arctan \left(b_{y}, b_{x}\right) \tag{3.59}
\end{gather*}
$$

3. The three-dimensional space $\mathbb{R}^{n \times m \times k}$ of the parameters is sampled, where each parameter is from a discrete interval defined by lower bound l, upper bound u and step (increment) i.
4. Values of angle θ representing the point p computed and stored for each combination of values of the parameters. To minimize the size of the table in memory, values of θ are precomputed only in range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ corresponding an area of I. and $I V$. quadrants. Fig. 3.8 shows example of position of points a and \mathbf{b} and these quadrants as a light red area. The rest of these values are mirrored by angle $\frac{\pi}{2}$ around y-axis in loading process.

Figure 3.8: Quadrants of circle C, where the angle is computed (light red area).

The second phase describes the loading of precomputed p values. It can be described by the following steps, where the inputs of this phase are the transformed values a_{y}^{t}, b_{x}^{t} and b_{y}^{t} (Algorithm 1 line 16):

1. Point b^{t} is mirrored to I. and $I V$. quadrant of circle around y-axis shown on Fig. 3.8.
2. Mirrored point b^{t} is converted from Cartesian representation of points $\left(b_{x}^{t}, b_{y}^{t}\right)$ to polar representation of points (s, ϕ).
3. a_{y}^{t}, s and ϕ are converted to the corresponding indexes in array based on their values:

$$
\begin{equation*}
i d x_{a}=\frac{a_{y}^{t}-l_{a}}{i_{a}} ; i d x_{s}=\frac{s-l_{s}}{i_{s}} ; i d x_{\phi}=\frac{\phi-l_{\phi}}{i_{\phi}} ; \tag{3.60}
\end{equation*}
$$

Where $i d x$ is an index in the array of the corresponding parameter, l is a lower bound defined in storing phase and i is the increment defined during storing data.
4. Instead of computing p^{t} (Algorithm 1 line 17), the value of angle θ is loaded from the table based on the indexes and mirrored back to original quadrant of circle. p^{t} is then computed as follows:

$$
\begin{align*}
& p_{x}^{t}=\cos (\theta) \tag{3.61}\\
& p_{y}^{t}=\sin (\theta) \tag{3.62}
\end{align*}
$$

If one of the indexes is out of table's range, this step is skipped and p^{t} is computed the way without precomputed values.

3.2 Touring polygon problem (TPP)

The touring polygon problem (TPP) [15 is an algorithm that finds the optimal path on a sequence of polygons. More specifically, the general TPP finds the shortest path on n convex polygons consisting of points, where each convex polygon is visited exactly once. The order of convex polygons is fixed and can not be changed.

However, in the thesis, we find the shortest path on circular tour T instead of a tour on the sequence of polygons. We modified the general TPP for this purpose and named it "Touring circle problem" (TCP). The general TPP algorithm was picked and modified because of the easy implementation and quick solving speed [15].

3.3 Touring circle problem (TCP)

The touring circle problem (TCP) is a modified version of the TPP, which finds the optimal circular tour $T=\left(T^{C}, T^{P}\right)$ for a fixed order of circles, i.e., T^{C} does not change.

The following sections describe the TCP algorithm and compare the computations on the map with and without obstacles. Section 3.3.1 describes the algorithm using a pseudocode.

3.3.1 Algorithm description

The TCP algorithm is described by Algorithm 2. The input of the algorithm is the circular tour T to optimize. The algorithm's output is already optimized circular tour $T_{\text {out }}$.

The first step of the algorithm is to randomly initialize the path T^{P} of the circular tour T (line 1). The central part of the algorithm consists of two nested cycles. The first one counts the iterations and exits the program loop when the stopping criteria (detailed in Section 9) are met. The second cycle iterates through the path of the circular tour T and finds the optimal
points on the path (line 7). More specifically, for the j th iteration, the point T_{j}^{P} on C_{j} that optimizes the distance between its preceding and succeeding point on T^{P} is computed using the point-circle-point solver. The preceding point (labeled as a) is generated by the $\operatorname{predecessor}(j)$ function (line 4). This function initially computes an index i of the preceding point:

$$
i=j \ominus 1,
$$

where the symbol \ominus is the subtraction modulo m, where m is the number of circles in the tour T. The point a is then selected from ith position of the path: $a=T_{i}^{P}$. The succeeding point (labeled as b) is generated by the successor (j) function (line 5). This function initially computes an index k of the succeeding point:

$$
k=j \oplus 1,
$$

where the symbol \oplus is the addition modulo m. The point b is then selected from k th position of the path: $b=T_{k}^{P}$. Fig. 3.9 shows the optimization process of TCP for two different CETSP instances Bubbles1 and ConcentricCircle1. Subfig. 3.9 a and 3.9 c represent the instances with the tour corresponding to the initial order of the centers of circles. Subfig. 3.9b and 3.9d show found T using TCP after six iterations in case of ConcentricCircle1 and twenty iterations in case of Bubbles1.

```
Algorithm 2: TCP
    Input: Tour to optimize \(T\)
    Output: Optimal tour \(T_{\text {out }}\)
    \(T^{P} \leftarrow\) random_init_path \(\left(T^{P}\right) ; / /\) randomly initialize path \(T^{P}\)
    repeat
        for \(j=1\) to \(/ T /\) do
            \(\mathrm{a} \leftarrow \operatorname{predecessor}(j)\);
            \(\mathrm{b} \leftarrow \operatorname{successor}(j)\);
            circle \(\leftarrow T_{j}^{C}\);
            \(T_{j}^{P} \leftarrow\) find_optimal_point(a, b, circle);
    until stopping criteria are met;
    \(T_{\text {out }} \leftarrow T\);
```


(a) : Bubbles1 with initial order or circles, where the T touring through centers of circles.

(c) : ConcetricCircles 1 with initial order or circles, where the T touring through centers of circles.

(b) : Bubbles1 with computed T using by TCP algorithm.

Figure 3.9: Computation of T using TCP algorithm for two different CETSP instances (Bubbles1 and ConcentricCircles1).

Stopping criteria

The stopping criteria (Algorithm 2 line 8) represent several conditions used to stop the main cycle of the algorithm. The choice of these conditions has a key role in the efficiency of the whole algorithm. The conditions are chosen to prevent the long run of the algorithm and oscillate the length of the computed circular tour T.

Two types of conditions exit the main cycle of the algorithm: regular and early. The regular type occurs when the difference between the length of the previous circular tour (circular tour in the previous iteration) and the current circular tour is lower than some reference value $e_{r e f}$.

The early type occurs when the count of iterations reaches limit $_{i t e r}$ value. Therefore, the finishing of the algorithm is guaranteed. If limititer $_{\text {ite }}$ value is correctly chosen, the early condition happens occasionally and only for big circular tours (the tour consisting of one hundred circles or more) or in case of a wrongly chosen $e_{r e f}$ value.

3.4 GLNS algorithm

The GLNS algorithm solves the exactly-one-in-set GTSP problem defined in Section 2.5. This algorithm is originally presented in the article [24] together with experimental results on several well-known GTSP instance libraries (GTSP-Lib, BAF-Lib, GTSP ${ }^{+}$-Lib, and SAT-Lib). The results are compared with the best heuristic algorithms (GK [25] and GLKH [14]), solving this type of problem available at that time. The GLNS algorithm is competitive with the algorithms mentioned above on GTSP-Lib and finds higher quality solutions on other libraries.

At the core of the GLNS solver is the adaptive large neighborhood search (ALNS) algorithm, which was initially proposed for pick-up and delivery problems [26]. The main idea is as follows. In the beginning, the initial solution is created and then repeatedly destroyed and repaired. If a better solution is found, then it is accepted. The destroy and repair procedures are repeated until the stopping criterion is met. The insertion and removal mechanisms, such as nearest, farthest, and random, were used to destroy and repair solutions [24].

The following subsections overview the general GLNS algorithm for exactly-one-in-set GTSP problem. A detailed description of the GLNS algorithm can be found in [24]. Section 3.4.1 explains the solver framework together with the given pseudocode. Section 3.4 .2 proposes three different modes: fast, medium, and slow. Section 3.4.3 presents different insertion heuristics and their unification in one unified insertion heuristic. Section 3.4.4 describes three removal heuristics. Section 3.4.5 introduces two types of optimization: Re-opt and Move-opt.

3.4.1 Solver description

The GLNS algorithm is described by pseudocode (Algorithm 3). The algorithm's input is the requested mode, and the output is a found optimal tour $T_{\text {out }}$. The whole algorithm works with three nested loops. The first one (lines 5 - 25) initializes the tour and updates the insertion and removal heuristics and their weights based on the algorithm's phase (early, mid, late). Each iteration can be termed as the cold restart of the algorithm. Number of cold restarts is determined by $N_{\text {cold }}$ value. The second one (lines $12-23$) is the algorithm's warm restart. This cycle makes a copy of the currently best tour (line 13). Number of warm restarts is determined by $N_{\text {warm }}$ value. The third one is called remove insert loop and performs the removal and insertion of the N_{r} vertices from the tour (tour reconstruction). The process of tour reconstruction is done by remove_insert function using removal and insertion heuristics (line 16). The number N_{r} is selected uniformly randomly from $\left\{1, \ldots, N_{\max }\right\}$ in each iteration. The new tour $T_{\text {new }}$ can be accepted or not, which is determined by applying the standard simulated annealing criterion. The new tour is locally optimized and replaces the currently best tour if the new tour is accepted and the current tour's length is better than the length of the currently best tour. Remove insert loop is repeated until the stopping criterion is met. Finally, the lowest tour is locally optimized with higher precision after finishing all iterations.

Stopping criteria

The stopping criterion is used in the solver framework (Algorithm 3 line 23) in the remove insert loop. Its main purpose is to optimize the number of calling of removal and insertion heuristics. There are two types of stopping criteria. The first one is met when the specific number of non-improving tour cycles in a row is reached. The non-improving tour cycle is a cycle of remove insert loop when the current tour $T_{\text {current }}$ is not accepted as the best tour ($T_{\text {best }}$). The specific number of non-improving tour cycles is given by the number called count $_{\text {first }}$ in the first turn of the algorithm and the number count $_{\text {latest }}$ in the second and other turns. One turn of the algorithm is cycles of remove insert loop continuing until $T_{\text {current }}$ is accepted as the new best tour $T_{\text {best }}$. If the number of non-improving tour cycles is equal to count first in the first turn or count latest in the second and other turns the remove insert loop is finished. The number of turns and the number of non-improving tour cycles are reset after starting each new warm restart loop. The numbers count $_{\text {first }}$ and count $t_{\text {latest }}$ have different values in each mode of the algorithm.

```
Algorithm 3: GLNS(G, \(\mathcal{S}\) )
    Input: Mode of algorithm \(m\); // m = \{fast, medium, slow\}
    Output: Optimal tour \(T_{\text {out }}\) on \(G\)
    Data: GTSP instances (G, \(\mathcal{S}\) )
    Precompute_distances(G, \(\mathcal{S})\); // precompute distances between
        each pair of vertices in \(\mathcal{S}\)
    \(T_{\text {init }} \leftarrow \operatorname{init}(\mathrm{G}, \mathcal{S}) ; \quad / /\) initialize tour
    \(T_{\text {lowest }} \leftarrow T_{\text {init }}\); // intialize lowest tour
    \(N_{\text {cold }}, N_{\text {warm }} \leftarrow\) init_params \((m) ; / /\) intialize parameters based
        on the mode of algorithm
    for \(j=1\) to \(N_{\text {cold }}\) do
            \(T_{\text {best }} \leftarrow T_{\text {init }} ;\)
            if \(j==1\) then
                Init insertion (I) and removal (R) heuristics
            else
                Update selection weights
                Update I and R based on the selection weights
            for 1 to \(N_{\text {warm }}\) do
                \(T_{\text {current }} \leftarrow T_{\text {best }} ;\)
                repeat
                    Select uniformly randomly a number of vertices to remove
                    \(N_{r}\) from \(\left\{1, \ldots, N_{\text {max }}\right\}\)
                    \(T_{\text {new }} \leftarrow\) remove_insert \(\left(T_{\text {current }}, \mathrm{I}, \mathrm{R}, N_{r}\right)\);
                    if accept_tour \(\left(T_{\text {new }}, T_{\text {current }}\right)\) then
                \(T_{\text {current }} \leftarrow T_{\text {new }}\);
                Record the improvement made by R and I ;
                    if \(\operatorname{len}\left(T_{\text {best }}\right)>\operatorname{len}\left(T_{\text {current }}\right)\) then
                    Optimize \(\left(T_{\text {current }}\right)\);
                    \(T_{\text {best }} \leftarrow T_{\text {current }} ;\)
                until stopping criterion is met;
            if \(\operatorname{len}\left(T_{\text {lowest }}\right)>\operatorname{len}\left(T_{\text {best }}\right)\) then
                \(T_{\text {lowest }} \leftarrow T_{\text {best }}\)
    6 Optimize ( \(T_{\text {lowest }}\) );
\(27 T_{\text {out }} \leftarrow T_{\text {lowest }}\);
```

Assume that the total iteration of the whole algorithm is equal to one cycle of remove insert loop and is not reset after each cold restart loop and warm restart loop. The second stopping criterion is met when the order of circles in $T_{\text {best }}$ and in $T_{\text {current }}$ is the same in the specific number of cycles in a row. The order of circles in tours $T_{\text {best }}$ and $T_{\text {current }}$ is considered to be the same if one of the following states is fulfilled:

1. Positions of all circles in $T_{\text {best }}^{C}$ are the same in $T_{\text {current }}^{C}$.
2. Circles in $T_{\text {current }}^{C}$ are shifted in a ring order with comparison to $T_{\text {best }}^{C}$.
3. Circles in $T_{\text {current }}^{C}$ are in a reverse order with comparison to $T_{\text {best }}^{C}$.
4. Circles in $T_{\text {current }}^{C}$ are shifted and in a reverse ring order with comparison to $T_{\text {best }}^{C}$.

The specific number is given by $N_{\text {same }}$ value, which can differ in each mode of the algorithm. This stopping criterion is valid after reaching the specific number of total iterations to prevent early termination of the algorithm, which can lead to an incorrect solution. $N_{\text {start }}$ value determines the specific number of total iterations and can differ in each mode of algorithm.

3.4.2 Modes of the algorithm

The main purpose of different modes is to regulate the ratio between the length of the found tour and the execution time for a given data instance. The description of all modes is as follows:

- Fast mode minimizes the execution time of the algorithm at the cost of possibly lengthening the tour. The number of cold and warm restarts is sufficiently small to prevent a long run of the algorithm.
- Medium mode tries to shorten length of tour by increasing the number of cold and warm restarts with compare to fast mode.
- Slow mode minimizes the length of the found tour at the cost of increasing execution time.

3.4.3 Insertion heuristics

The main purpose of insertion heuristics is to insert vertices to the tour and create a complete tour T from a partial tour T_{s}. The partial tour $T_{s}=\left(V_{s}\right.$, E_{s}) visits a subset of clusters S_{s} denoted as $S_{s} \subseteq \mathcal{S}$. V_{s} is a subset of vertices $V_{s} \subseteq V$ and E_{s} is a subset of edges $E_{s} \subseteq E$ in the graph G. Firstly, we define a distance dist between a cluster ($S_{i} \in \mathcal{S} \backslash S_{s}$) and vertex $u \in V_{s}$ on T_{s} :

$$
\begin{equation*}
\operatorname{dist}\left(S_{i}, u\right)=\min _{v \in S_{i}}\{\min \{w(v, u), w(u, v)\}\} \tag{3.63}
\end{equation*}
$$

Secondly, we describe the insertion methods initially proposed in [26], which choose the optimal cluster ($S_{o p t} \in \mathcal{S} \backslash S_{s}$):

1. Nearest insertion selects a cluster $S_{o p t}$ with minimal distance to any vertex u on the T_{s} :

$$
\begin{equation*}
S_{o p t}=\underset{S_{i} \in S \backslash S_{s}}{\arg \min } \min _{u \in V_{s}} \operatorname{dist}\left(S_{i}, u\right) \tag{3.64}
\end{equation*}
$$

2. Farthest insertion selects a cluster V_{s}, whose closest vertex to any vertex on the T_{s} is maximal:

$$
\begin{equation*}
S_{o p t}=\underset{S_{i} \in S \backslash S_{s}}{\arg \max } \min _{u \in V_{s}} \operatorname{dist}\left(S_{i}, u\right) \tag{3.65}
\end{equation*}
$$

3. Random insertion selects a cluster $S_{\text {opt }}$ uniformly randomly from the set $\mathcal{S} \backslash S_{s}$.
4. Cheapest insertion selects a cluster $S_{o p t}$ containing the vertex $v \in S_{o p t}$ that minimizes the insertion cost:

$$
\begin{equation*}
S_{o p t}=\underset{S_{i} \in S \backslash S_{s}}{\arg \min } \min _{(x, y) \in E_{s}}\{w(x, v)+w(v, y)-w(x, y)\} \tag{3.66}
\end{equation*}
$$

Furthermore, a vertex v must be chosen from $S_{o p t}$, which was picked by one of the insertion methods. The process of picking v is described by the following steps:

1. Find an edge $(x, y) \in E_{s}$ that minimizes $w(x, v)+w(v, y)-w(x, y)$.
2. Delete the edge (x, y) from E_{s}.
3. Add the edges (x, v) and (v, y) to E_{s}.
4. Add the vertex v to V_{s}.

The process of selecting $S_{o p t}$ and picking v is repeated until T_{s} contains vertices from all clusters from \mathcal{S} and the tour becomes a complete tour T.

Unified insertion

Because of the four different insertion heuristics, it is essential to find an effective way to switch between multiple insertion heuristics. The solution is the unified insertion heuristic, which unifies selecting a cluster $S_{\text {opt }} \in \mathcal{S} \backslash S_{s}$ for the nearest, farthest, and random insertion methods. The cheapest insertion heuristic is based on different techniques and can not be unified. Firstly, we define the minimum distance ($d_{\text {min }}$) between cluster $S_{i} \in \mathcal{S} \backslash S_{s}$ and partial tour T_{s}.

$$
d_{\text {min }}=\operatorname{dist}\left(S_{i}, T_{s}\right)=\min _{u \in V_{s}} \operatorname{dist}\left(S_{i}, u\right)
$$

Secondly, the heuristic framework for picking the cluster $S_{\text {opt }}$ is described by Algorithm 4 . Line 1 describes the precomputation of the distances between each pair of vertices in unused clusters $\mathcal{S} \backslash S_{s}$ using $d_{\text {min }}$ formula. Line 2 describes the selection of the parameter k using the probability mass function, which is defined by a set of λ values and its powers from 0 to l. The value l is the number of unused clusters $\left|\mathcal{S} \backslash S_{s}\right|$. The next step is to pick $S_{o p t}$ based on the parameter k (lines 3 - 4).

The insertion heuristic type is specified by the parameter $\lambda \in[0, \infty)$. Only three values decide a specific insertion heuristic. The remaining values of λ define combinations of these insertion heuristics. Values $(0,1)$ combine the random and the nearest insertion, and values $(1, \infty)$ combine the nearest and the farthest insertion. Three specific values of λ are described as follows:

- Random insertion is obtained by setting $\lambda=1$.
- Nearest insertion is achieved by $\lambda=0$.
- Farthest insertion is received by $\lambda=\infty$ (or some large enough value).

The undefined state 0^{0} is equal to 1 in our case. The original paper [24] shows the difference between performances using different λ parameters.

```
Algorithm 4: Unified insertion heuristic framework
    Input: Partial tour \(T_{s}\) on \(G\)
    Output: The selected cluster \(S_{o p t}\)
    Data: GTSP instances (G, \(\mathcal{S}\) )
    Pre-compute_distances(G, \(\mathcal{S} \backslash S_{s}\) )
    Select uniformly randomly \(k\) from set \(\{1, \ldots, l\}\) according to
    unnormalized probability mass function \(\left[\lambda^{0}, \lambda^{1}, \ldots, \lambda^{l-1}\right]\)
3 Sort an array of all unused clusters \(\left(\mathcal{S} \backslash S_{s}\right)\) according to \(d_{\text {min }}\) from
    lowest to highest
4 Pick the cluster \(S_{o p t}\) with the \(k\) th index from the array of all unused
    clusters
    return \(S_{\text {opt }}\)
```


3.4.4 Removal heuristics

The main purpose of removal heuristics is to remove N_{r} vertices from a tour T. The removal heuristics initially proposed in [26], are briefly described below.

Worst removal

The worst removal heuristic removes the vertex v_{j} from a tour T that maximizes the removal cost r_{j}, which says how the vertices reduce the tour's length:

$$
\begin{equation*}
r_{j}=w\left(v_{j \ominus 1}, v_{j}\right)+w\left(v_{j}, v_{j \oplus 1}\right)-w\left(v_{j \ominus 1}, v_{j \oplus 1}\right), \tag{3.67}
\end{equation*}
$$

While this operation removes only one vertex from the required N_{r} vertices, it is repeated N_{r} times.

Distance removal

The main idea of this heuristic is to remove vertices from T that are "close" to each other. At first, the uniformly randomly chosen vertex $v_{\text {seed }}$ is removed

3. Solution Approach

from T. For each vertex v_{i} from the tour T without $v_{\text {seed }}$ is computed distance d_{i} as follows:

$$
\begin{equation*}
d_{i}=\min \left\{w\left(v_{\text {seed }}, v_{i}\right), w\left(v_{i}, v_{\text {seed }}\right)\right\} \tag{3.68}
\end{equation*}
$$

Vertex v_{i} with minimal distance d_{i} to $v_{\text {seed }}$ is removed. The process is repeated until $N_{r}-1$ vertices are removed from T. The last removed vertex corresponds to $v_{\text {seed }}$.

Segment removal

The main purpose of the segment removal heuristic is to resolve the possible local optima by destroying large and contiguous segments of N_{r} vertices of T. Firstly, the index j is uniformly randomly selected from the tour T. Secondly, vertices $v_{j}, v_{j \oplus 1}, \ldots, v_{j \oplus N_{r}-1}$ are removed from the tour T.

3.4.5 Tour optimization

The main reason for optimizing the tour is possibly shortening its length in a short amount of computation time by fixing some parts of a current solution. Tour optimization is applied several times in the algorithm (Algorithm 3 lines 21 and 26). Two types of optimization methods that can run consecutively or separately based on the mode of the algorithm are applied as follows:

1. Re-Opt attempts to optimize the tour T with fixed ordering of a set of clusters \mathcal{S}. The main idea is as follows:
a. A direct acyclic graph (DAG) containing all vertices V from graph G is created.
b. Each vertex from cluster V_{i} is connected to all vertices in the next cluster of the ordering.
c. The vertices in the last cluster are connected to the first cluster of the ordering vertices.
d. The optimized tour is the shortest path in the DAG graph, which starts and ends in the same vertex in the first cluster. The shortest path is found by the breadth-first search $B F S$ algorithm.
2. Move-Opt attempts to optimize the ordering of vertices in T. Firstly, a vertex v from cluster $S_{i} \in \mathcal{S}$ is uniformly randomly selected and removed from the tour $T=\left(V_{T}, E_{T}\right)$.
Secondly, a new vertex u from the same cluster S_{i} is reinserted to the position in T, where an insertion cost is minimal. Thus the order of vertices in T is changed. The insertion cost c_{i} is defined as:

$$
c_{i}=w(x, u)+w(u, y)-w(x, y) ; \forall u \in S_{i} ; \forall(x, y) \in E_{T} ;
$$

The reinsertion is repeated until $N_{\text {move }}$ vertices is reinserted.

3.5 GLNS-CETSP

The original GLNS algorithm has valuable properties such as relatively easy adjustment to solve a slightly different problem (CETSP problem in our case) and a variety of parameters that enable the improvement of the algorithm's performance. Because of that, we used and modified this algorithm to solve the CETSP problem. More specifically, we try to find the circular tour T with a minimal length by this algorithm. Several modifications of the original GLNS were made to resolve the CETSP problem:

1. Tour modification - Instead of the general tour described by a graph G, it is used a circular tour T described by circles and points.
2. Insertion heuristic modification - The idea of all heuristics remains the same, but we work with circles instead of clusters. In addition, an emplace point heuristic is applied to optimize the inserting point from the picked circle to the circular tour T.
3. Removal heuristic modification - The modifications are minimal, and all methods remain the same except the usage of a different type of tour.
4. Tour optimization modification- Firstly, a completely different Re-Opt optimization solver is proposed. Instead of generating a direct acyclic graph (DAG), the TCP algorithm was used. Secondly, point reinsertion in the Move-Opt optimization process is different.
5. Initial tour generation modification- We propose two different methods to initialize circular tour T : random and TSP-based. The random method initializes the tour uniformly randomly, which is the same as in the original GLNS. The TSP-based method applies a TSP solver to initialize circular tour T.

3. Solution Approach

The following subsections detail the modifications mentioned above. Section 3.5 .1 describes the insertion heuristics and their modifications. Section 3.5.3 describes and compares the removal heuristics with the original GLNS. Section 3.5.2 describes the new emplace point heuristic used to select the optimal point on the circle and insert it to the optimal position in the circular tour T. Section 3.5 .4 aims to describe the new Re-Opt optimization process and all differences in Move-Opt optimization process. Section 3.5 .5 defines two methods for initializing the circular tour T.

3.5.1 Insertion heuristics

Assume a partial circular tour $T_{s}=\left(T_{s}^{P}, T_{s}^{C}\right)$, where $T_{s}^{P} \subseteq T^{P}$ and $T_{s}^{C} \subseteq T^{C}$. T_{s} visits only subset of circles $C_{s} \subseteq \mathcal{C}$.

Insertion heuristics find the optimal circle to insert $C_{\text {opt }} \in \mathcal{C} \backslash C_{s}$, compute point $p_{\text {opt }}$ on $C_{o p t}$ and then insert $p_{\text {opt }}$ to T_{s}^{P} and $C_{o p t}$ to T_{s}^{C} on the position in the T_{s} called emplace index.

The emplace index $i_{\text {emplace }}$ is the position in T_{s} that minimize insertion cost of T. Insertion cost ($c_{\text {insert }}$) of point $q \in T_{s}^{P}$ that is inserted between two points $p_{1}, p_{2} \in T_{s}^{P}$ on T_{s}^{P} is defined as:

$$
\begin{equation*}
c_{\text {insert }}\left(q, p_{1}, p_{2}\right)=d\left(q, p_{1}\right)+d\left(p_{2}, q\right)-d\left(p_{1}, p_{2}\right) \tag{3.69}
\end{equation*}
$$

The insertion methods, which find $C_{\text {opt }}$ are described as follows:

1. Nearest insertion picks $C_{o p t}$ with a minimal distance to any circle $C_{u} \in T_{s}^{C}$:

$$
\begin{equation*}
C_{\text {opt }}=\underset{C_{i} \in C \backslash C_{s}}{\arg \min } \min _{u} \in T_{s}^{C} \text { dist }\left(C_{i}, C_{u}\right) \tag{3.70}
\end{equation*}
$$

2. Farthest insertion picks $C_{o p t}$, whose closest distance to T_{s} is maximal:

$$
\begin{equation*}
C_{\text {opt }}=\underset{C_{i} \in C \backslash C_{s}}{\arg \max } \min _{C_{u} \in T_{s}^{C}} \operatorname{dist}\left(C_{i}, C_{u}\right) \tag{3.71}
\end{equation*}
$$

3. Random insertion picks a circle $C_{o p t}$ uniformly randomly from the set $\mathcal{C} \backslash C_{s}$.

The process of computing $p_{\text {opt }}$ on selected $C_{\text {opt }}$ and finding emplace index $i_{\text {emplace }}$ is determined by "Emplace point heuristic".

The other heuristic called cheapest insertion selects $C_{\text {opt }}$ and computes $p_{\text {opt }}$ together with $i_{\text {emplace }}$ at the same time. It repeatedly calls "Emplace point heuristic" for all $C_{i} \in \mathcal{C} \backslash C_{s}$ and picks one together with its point p_{i} that minimizes $c_{\text {insert }}$:

$$
\begin{equation*}
C_{\text {opt }}, p_{\text {opt }}=\underset{C_{i} \in C \backslash C_{s}}{\arg \min } \min _{\left(p_{1}, p_{2}\right) \in T_{s}^{P}}\left\{c_{\text {insert }}\left(p_{i}, p_{1}, p_{2}\right)\right\} \tag{3.72}
\end{equation*}
$$

The process of selecting $C_{o p t}$ and picking point $p_{o p t}$ is repeated until T_{s}^{P} contains points from all circles in T^{C} from the set of circles S_{v} and the tour becomes complete.

Unified insertion

The main idea of unified insertion is the same as in Section 3.4.3. The modifications used in our version are proposed as follows:

1. Instead of picking cluster $V_{\text {opt }} \in \mathcal{S} \backslash S_{s}$, the circle $C_{\text {opt }} \in \mathcal{C} \backslash C_{s}$ is picked to partial circular tour T_{s}.
2. The minimum distance $d_{\text {min }}$ function is changed. $d_{\text {min }}$ function is defined between $C_{i} \in \mathcal{C} \backslash C_{s}$ and T_{s} as:

$$
d_{\min }=\operatorname{dist}\left(C_{i}, T_{s}\right)=\min _{C_{u} \in C_{s}} \operatorname{dist}\left(C_{i}, C_{u}\right)
$$

3.5.2 Emplace point heuristic

Emplace point heuristic is used as a part of the insertion heuristic and optimization process. It aims to find the emplace index $i_{\text {emplace }}$ effectively in

3. Solution Approach

the circular partial tour T and optimal point p_{i} on the circle C_{i}, which must be inserted into the tour.

The heuristic is described by a pseudocode (Algorithm 5). Its input is T and the circle C_{i} to insert to T. Output is the emplace index $i_{\text {emplace }}$ and the computed optimal point p_{i} on C_{i}. At the start, it is required to initialize the parameters as follows:

- Indexes is an array of indexes of sorted circles in T by distances to C_{i} from nearest to farthest (line 1).
- Cost represents the length of T (line 2) as defined in Section 2.3 .
- Min represents the length of a shortest tour found so far (line 3).

The main cycle (lines 4-16) iterates through each consecutive pair of points in T and checks the optimal place to insert C_{i}. Firstly, the first index m is obtained from the sorted array indexes and k is the index of the next circle in T. The optimal point $p_{o p t}$ on the circle C_{i} is determined by the point-circle-point solver represented by find_optimal_point function (line 11). As the solver is time-consuming, we want to prevent unnecessary calls of it. For this purpose, we applied lower-bound checking (line 10) comparing cost and lower-bound cost (cost $_{l b}$), where cost is initially equal to the tour's length. Lower-bound cost (line 9) is defined by summation of cost, Euclidean distance between points a and b, and lower-bound formula.

Lower-bound formula $l b$ is defined as the shortest distance between two circles C_{a} and C_{b} on T and C_{i}, which is inserted between these two circles:

$$
l b\left(C_{a}, C_{b}, C_{i}\right)=\operatorname{dist}\left(C_{a}, C_{i}\right)+\operatorname{dist}\left(C_{i}, C_{b}\right)=d\left(c_{a}, c_{i}\right)+d\left(c_{i}, c_{b}\right)-r_{a}-r_{b}-2 \cdot r_{i}
$$

3.5.3 Removal heuristics

Removal heuristics remove N_{r} points from the path T^{P} in circular tour T and their corresponding circles T^{C}. The modified heuristics are proposed as follows:

```
Algorithm 5: Emplace point heuristic
    Input: Partial tour \(T\) and circle \(C_{i}\) to insert
    Output: emplace index \(i_{\text {emplace }}\) and optimal point \(p_{i}\)
    indexes \(\leftarrow \operatorname{sort}\left(T^{C}, C_{i}\right) ; \quad / /\) Sort circles in tour
    \(\operatorname{cost} \leftarrow \operatorname{len}(T)\);
    \(\min \leftarrow \infty\);
    for \(j=1\) to \(\mid T /\) do
        \(\mathrm{m} \leftarrow \operatorname{indexes}(\mathrm{j}) ;\)
        \(\mathrm{k} \leftarrow \mathrm{m} \oplus 1\);
        \(\mathrm{a} \leftarrow T_{m}^{P}\);
        \(\mathrm{b} \leftarrow T_{k}^{P}\);
        \(\operatorname{cost}_{l b} \leftarrow \operatorname{cost}-\mathrm{d}(\mathrm{a}, \mathrm{b})+l b\left(T_{m}^{C}, T_{k}^{C}, C_{i}\right) ;\)
        if cost \(_{l b}<\) cost then
            \(p_{o p t} \leftarrow\) find_optimal__point \(\left(\mathrm{a}, \mathrm{b}, C_{i}\right)\);
            \(\operatorname{cost}_{\text {min }} \leftarrow \operatorname{cost}+\mathrm{d}\left(\mathrm{a}, p_{o p t}\right)+\mathrm{d}\left(p_{o p t}, \mathrm{~b}\right)-\mathrm{d}(\mathrm{a}, \mathrm{b}) ;\)
            if cost \(_{\text {new }}<\min\) then
            \(\min \leftarrow\) cost \(_{\text {new }} ;\)
            \(p_{i} \leftarrow p_{\text {opt }} ;\)
            \(i_{\text {emplace }} \leftarrow \mathrm{k}\);
    return \(i_{\text {emplace }}, p_{i}\)
```

1. Worst removal removes point $p_{i} \in T^{P}$ and its corresponding circle $C_{i} \in T^{C}$ that maximizes the removal cost r_{i} :

$$
\begin{equation*}
r_{i}=d\left(p_{i \ominus 1}, p_{i}\right)+d\left(p_{i}, p_{i \oplus 1}\right)-d\left(p_{i \ominus 1}, p_{i \oplus 1}\right), \tag{3.73}
\end{equation*}
$$

While this operation removes only one point and circle from the required N_{r} points and circles, it is repeated N_{r} times.
2. Distance removal uniformly randomly selects and removes point $p_{\text {seed }}$ from T and its circle $C_{\text {seed }}$. For each point $p_{j} \in T^{P}$ except $p_{\text {seed }}$ is computed distance d_{j} as follows:

$$
\begin{equation*}
d_{j}=\min \left\{d\left(p_{\text {seed }}, p_{j}\right), d\left(p_{j}, p_{\text {seed }}\right)\right\} \tag{3.74}
\end{equation*}
$$

Point p_{j} with minimal d_{j} to $p_{\text {seed }}$ is removed from T^{P} together with circle C_{j} from T^{C}. The process is repeated until $N_{r}-1$ points and circles are removed from T.
3. Segment removal removes a segment of points and their circles from T. Firstly, the index j is uniformly randomly selected from T. Secondly, points $p_{j}, p_{j \oplus 1}, \ldots, p_{j \oplus N_{r}-1}$ are removed from T.

3.5.4 Tour optimization

In the GLNS-CETSP algorithm, the tour optimization has the same purpose as in the original GLNS algorithm (Section 3.4.5). The modifications are described as follows:

1. Re-Opt optimizes only points in path T^{P} with fixed order of circles in T^{C}. The optimization process is performed by the TCP algorithm. Because of the fixed order of points, this method can be fast assuming the correctly chosen parameters of the TCP algorithm.
2. Move-Opt optimizes the ordering of circles in T. Circle C_{i} is uniformly randomly selected and removed from T^{C} together with its point on the path T^{P}. The new optimal point p_{i} on C_{i} is computed by the "Emplace point heuristic" together with emplace index $i_{\text {emplace }} . C_{i}$ is inserted to T^{C} on the position of $i_{\text {emplace }}$. The optimal point p_{i} is inserted to T^{P} on the position of $i_{\text {emplace }}$. This process is repeated until $N_{\text {move }}$ points, and circles are reinserted to T. Limitations of this method are its time consummation for big $N_{\text {move }}$ number and insufficient improvement of the tour length in case of small $N_{\text {move }}$ number. Because of these limitations, this method is not used in the fast mode of the algorithm.

3.5.5 Initial tour generation

Initial tour of the GLNS-CETSP algorithm $T_{\text {init }}$ (Algorithm 3 line 2) defines the initial order of circles in each cold restart loop (Algorithm 3 lines 5-25). Quality of $T_{\text {init }}$ significantly affects the execution time and the solution of the GLNS-CETSP algorithm. Assume that the order of circles in $T_{\text {init }}$ is initialized similar to the order of circles in the optimal solution. Therefore, it is more likely that the computational process of GLNS-CETSP will be faster and the algorithm's output tour $T_{\text {out }}$ (Algorithm 3 line 27) will be shorter than in case of inappropriately chosen $T_{i n i t}$, such as tour where the order of circles is mixed up undesirably. $T_{\text {init }}$ is generated by an initialization method.

The GLNS-CETSP algorithm uses four different initialization methods: random, random-insertion, unsupervised-learning-based and TSP-based. The random method sets the order of circles of the tour $T_{\text {init }}$ uniformly randomly. The main advantage is its speed of the initialization process and the disadvantage is a poor quality of a generated solution.

The random-insertion method adds circles to $T_{\text {init }}$ using the unified insertion heuristic framework with $\lambda=1$.

The TSP-based method initializes the order of circles in $T_{\text {init }}$ by solving the $T S P$ problem on centers of circles. It was picked Lin-Kernighan-Helsgaun $L K H$ heuristic [14] to solve the TSP problem because it is generally considered to be one of the most effective. The heuristic finds an optimal or near-optimal TSP tour $T_{t s p}$. LKH found in many cases the same order of circles as it is in the optimal solution of CETSP problem. On the other hand, LKH found completely different order of circles on more complex CETSP instances, where the circles overlap a lot. An example of the same order and completely different order of circles found by $L K H$ on two different instances is shown on Fig .3.10. Nonetheless, despite the limitations, the LKH is still a sufficient heuristic used as a tour initializes.

(a) : Instance Bubbles 1 with found order of circles by LKH, which is the same as the order of circles in the optimal solotion of CETSP problem for this instance.

(b) : Instance Bubbles with order of circles found by LKH, which is completely different from order of circle in the optimal solution.路

(c) : Instance Bubbles2 with visualization of order of circles equal to order of circles in the optimal solution.

[^0][^1][^2]
3. Solution Approach

The unsupervised-learning-based method initializes $T_{\text {init }}$ by solving CETSP problem using an unsupervised learning procedure calling Growing SelfOrganizing Array GSOA [8]. This procedure is very fast, i.e., GSOA finds the solution on a dataset with 1000 circles in less than one second but slower than random and random-insertion methods. Moreover, the order of circles is generally very close to the optimal solution and even the same for many instances.

3.6 Environment with obstacles

Assume the variants $C E T S P_{\text {obst_dis }}$ and $C E T S P_{\text {obst_int }}$ of CETSP problem and map that specify the environment for these variations. The shortest collision-free path path free between two points on map is defined as set of points path free $=\left\{p_{1}, p_{2}, \ldots, p_{l}\right\}$, where p_{1} is a start point, p_{l} is an end point, and the rest of the points are collision-free points. The Euclidean distance metric can not be used to compute the distance between p_{1} and p_{l} because the environment with polygonal obstacles is used. Nevertheless, the Euclidean distance metric is used to compute the distance between each pair of consecutive points in path $_{\text {free }}$.

Two modifications of our algorithm are proposed to solve these variations of the CETSP problem:

1. Points a and b in TCP algorithm (Algorithm 2 lines 4 -5) and emplace point heuristic (Algorithm 5 lines 7 - 8) are picked based on their path free . More specifically, a new previous point $a_{\text {new }}$ in T^{P} corresponds to the one before the last point in path free between $a \in T^{P}$ on circle $C_{a} \in T^{C}$ and the center of the current circle $C_{i} \in T^{C}$. If there is no obstacle between C_{a} and $C_{i}, a_{\text {new }}$ corresponds to $p_{1} \in$ path $_{\text {freee }}$, i.e., $a_{\text {new }}$ is equal to a. A new next point $b_{\text {new }}$ is computed the same way as $a_{\text {new }}$ except that path free now starts from $b \in T^{P}$ on circle $C_{b} \in T^{C}$ and ends in the center of $C_{i} \in T^{C}$. Points $a_{\text {new }}$ and $b_{\text {new }}$ are the input of the "find optimal point function" in Algorithm 2 line 7 and Algorithm 5 line 11. The illustrated example of computing $a_{\text {new }}$ and $b_{\text {new }}$ is shown in Fig. 3.11
2. The found tour $T_{\text {out }}$ in GLNS algorithm (Algorithm 3 line 27) is reconstructed, i.e., path $_{\text {free }}$ is computed between each pair of consecutive points in $T_{\text {out }}^{P}$. Fig. 3.12 shows the difference between final $T_{\text {out }}$ and reconstructed final $T_{\text {out }}$

(a) : Points a and b on their circles and C_{i} with highlight center.

(b) : Created collision-free points on two path free.

(c) : Created path $_{\text {free }}$ from a (blue) and from b (orange) to center of circle C_{i}.

(d) : Determined new points $a_{\text {new }}$ and $b_{\text {new }}$ from created path $_{\text {free }}$.

Figure 3.11: Process of generating two collision free paths path free and computing points $a_{\text {new }}$ and $b_{\text {new }}$ on corresponding path free .

(a): Found $T_{\text {out }}$, which ignoring obstacles.

(b) : Reconstructed $T_{\text {out }}$, where the obstacles are not ignored.

Figure 3.12: Comparison of found two different $T_{\text {out }}$. The first ignore obstacles and the second tour is reconstructed and avoids the obstacles on the map.

3. Solution Approach

3.6.1 Polyanya solver

The polyanya solver that is fast and effective was chosen to compute a path $_{\text {free }}$. This solver is initially presented by Michael Cui and Daniel D. Harabor, and Alban Grastien [27]. The approach of this solver can be divided into three steps as follows:

1. Convert map into navigation merged mesh called Constrained Delaunay Triangulation $M-C D T$.
2. Compute shortest Euclidean distances between consecutive points in the path $_{\text {free }}$ on $M-C D T$ mesh.
3. Generate path $_{\text {free }}$.

Example of finding collision-free points and generating path $_{\text {free }}$ by polyanya solver is shown on Fig. 3.11. The subfigure (a) shows the three initial points (a, b and center of circle C_{i}). Between these points are found two collision-free paths path $_{\text {free }}$. The subfigure (b) shows generated all relevant collision-free points. The subfigure (c) shows two generated path free.

Conversion of the map to mesh

Assume set of s traversable simple polygons is defined $\mathcal{M}=\left\{M_{1}, \ldots, M_{s}\right\}$, where $M_{i}=\left(V_{K}, E_{K}\right) . \quad V_{K}$ is a sequence of m distinct vertices $V_{K}=$ $\left\{V_{1}, V_{2}, \ldots, V_{m}\right\}$ and E_{K} is a sequence of $m-1$ edges $E_{K}=\left\{e_{1}, e_{2}, \ldots, e_{m-1}\right\}$ that joins vertices $V_{K} . V_{K}$ and E_{K} are defined on graph G Section 2.2 as $V_{K} \subseteq V$ and $E_{K} \subseteq E$. The navigation mesh $\mathcal{N}=(\mathcal{M}, \mathcal{P})$, where \mathcal{P} is set of n obstacles on the map defined in Section 2.6.

The $C D T$ is a constrained Delaunay triangulation of traversable area on \mathcal{N}. Constrained Delaunay triangulation is described in [28. The merged $M-C D T$ is a $C D T$, which merges all polygons with sharing edges. The main purpose of $M-C D T$ is to retain solving complexity and maximize the area of \mathcal{M}.

An example of the process of conversion on the input map called potholes is shown on Fig. 3.13 described as follows:

1. The input map is converted into $C D T$ mesh using FADE2D library [29].
2. The $C D T$ mesh is merged to $M-C D T$ mesh .

(a) : Input potholes map with obstacles highlighted by red color.

(b) : From potholes is generated $C D T$ mesh.

(c): From $C D T$ is generated $M-C D T$ mesh.

Figure 3.13: An example of process of conversion potholes map.

3.7 Generator of CETSP instances

Suppose the variants $C E T S P_{\text {dis }}$, CETSP $_{\text {int }}$, CETSP $_{\text {obst_dis }}$, and $C E T S P_{\text {obst_int }}$ of CETSP problem and their maps. All 62 instances of CETSP-lib were solved by the GLNS-CETSP algorithm, but they fulfill the requirements only for $C E T S P_{\text {int }}$ variant. CETSP instances that fulfill the requirements for the rest of these variants were generated by the generator of circles.

There are two types of CETSP instances that were generated based on the sizes of radii of circles: random and fixed. In random type, each $C_{i} \in \mathcal{C}$ has

3. Solution Approach

r_{i} generated uniformly randomly in a given range. In fixed type, each $C_{i} \in \mathcal{C}$ has the same value of r_{i}. The radii of circles differ in each set \mathcal{C} to fill the largest area of the traversable part of the map.

Four different maps were used to generate instances: potholes, large, jarihuge and warehouse. Used maps are shown in Fig. 3.14 together with different generated instances. Polygonal obstacles have a red color, the borders are symbolized by blue lines, and the circles have randomly assigned colors. Circles are generated on the maps with obstacles even for the $C E T S P_{d i s}$ variant, where the polygonal obstacles are neglected during the solving process. The generator's output is generated \mathcal{C}.

(a) : Potholes map together with 200 disjoint circles with fixed size of radii. Instance is called disjoint_200.

(c) : Jari-huge map together with 100 disjoint circles with random size of radii. Instance is called disjoint_100_random.

(b) : Large map together with 200 intersect circles with random size of radii. Instance is called intersect_200_random.

(d) : Warehouse map together with 400 intersect circles with fixed size of radii. Instance is called intersect_400.

Figure 3.14: All used maps describing the environment with polygonal obstacles.

The generator is described by the pseudocode Algorithm 6. The generator's inputs are the number of circles to generate m, Boolean value random choosing the type of CETSP instance and a map. The generator has one main loop (lines 1 -12) that exits if the set \mathcal{C} contains m circles (stopping criterion line 12). The loop starts generating a circle C_{i} with a center c_{i} inside the map (line 2) and radius r_{i} (line 3) uniformly randomly or with a fixed value. Three conditions must be fulfilled before the circle C_{i} is saved into \mathcal{C} :

1. C_{i} must be inside the border of map (line 5).
2. C_{i} can not collide with obstacles \mathcal{P} on map (line 7). C_{i} collides with obstacle $P_{j} \in \mathcal{P}$ if intersect.
3. C_{i} can not collide with other circles in \mathcal{C} (line 9). If the circles can intersect, the center of each circle can not be located inside other circles in \mathcal{C}. The circles can not intersect at all in the case of disjoint circles.

If one of these is not fulfilled, the iteration is skipped and the main loop is repeating.

```
Algorithm 6: Generator of CETSP instances
    Input: Map, m, random
    Output: Set of circles \(\mathcal{C}\)
    repeat
        \(c_{i} \leftarrow\) generate_center (map);
        \(r_{i} \leftarrow\) generate(random);
        \(C_{i} \leftarrow \operatorname{create}\left(c_{i}, r_{i}\right) ;\)
        if \(i s \_n o t \_i n s i d e \_m a p\left(m a p, C_{i}\right)\) then
            continue with the next iteration;
        if collide_with_obstacles(map, \(C_{i}\) ) then
            continue with the next iteration;
        if collide_with_other \(\left(\mathcal{C}, C_{i}\right)\) then
            continue with the next iteration;
        \(\mathcal{C} \leftarrow \operatorname{save}\left(C_{i}\right) ;\)
    until stopping criterion is met ;
    return \(\mathcal{C}\)
```


3.8 Code implementation

The majority of the algorithms described in the previous sections have been implemented from scratch in C++. Moreover, several libraries and implemen-

3. Solution Approach

tations of other authors were used. These are described next together with their necessary modifications done to integrate them into the whole project.

3.8.1 GLNS-CETSP

The general GLNS algorithm described in Section 3.4 is initially implemented in the programming language Julia ${ }^{1}$. In the master thesis presented by David Woller [30], the GLNS algorithm is implemented in the programming language $\mathrm{C}++$ and compared with the original version implemented in Julia. In addition, Jan Vidašič [31] in his master thesis modified the GLNS in C++ version to solve the traveling salesman problem with neighborhoods in a polygonal domain. We used both C++ versions of GLNS and modified them to solve the CETSP problem also in $\mathrm{C}++$.

3.8.2 ТСР

The TPP algorithm solving a tour on a sequence of polygons was implemented by Jan Vidašič as a part of the GLNS algorithm [31]. This implementation was used as a template for our $T C P$ algorithm and completely modified to find a tour on a sequence of circles instead of polygons. The TCP is implemented in $\mathrm{C}++$ and it is one of the parts of the GLNS-CETSP algorithm. Moreover, $T C P$ can be used as a stand-alone algorithm.

3.8.3 LKH

The general LKH library ${ }^{2}$ implemented in the programming language C was used to implement LKH in this thesis. The general LKH library requires tuning some internal parameters to achieve an effective solver tailored to our CETSP problem. It was done by supervisor Miroslav Kulich in the form of a library called lkh in code.

[^3]
3.8.4 GSOA

The original implementation of GSOA proposed by J.Faigl ${ }^{3}$ was used and edited to the library, which allows us to call the GSOA solver in our project. The modifications were done because the original solution is a stand-alone executable project without the option to call the solver directly from another project.

3.8.5 Polyanya solver

Polyanya solver and mesh converter [27] are implemented in the programming language C++ and provided in the form of already compiled executable files. These files can not be used for these reasons:

1. Mesh converter requires a different input map than we apply.
2. We need call of this solver directly from our algorithms.

Hence, we modified the original mesh converter to convert our type of maps to $M-C D T$ mesh. In addition, we adjusted the solver to be callable in our algorithm.

[^4]
Chapter 4

Experiments

In this thesis, several experiments were proposed to measure the performance of implementation of GLNS-CETSP algorithm. Firstly, the performance of three different algorithm modes (fast, medium, and slow), four different initialization heuristics (random_insertion, random, LKH, and GSOA), and two versions of PCP solver called simplified and precomputed were compared sequentially. Secondly, the configuration of GLNS-CETSP with the best results is selected and compared with other algorithms. A new algorithm $G S O A+T C P$ was proposed and compared with GLNS-CETSP and GSOA. Finally, GLNS-CETSP were tested on CETSP instances on four maps with polygonal obstacles.

Section 4.1 describes tools and methods including used parameters of the algorithms and the instances on which were the experiments evaluated. Pa rameters of GLNS-CETSP, GLNS-GTSP, and PCP algorithms are described in Section 4.1.1. All used instances on the maps with and without obstacles are described in Section 4.1.2. Description of the evaluation and measuring of performance of the algorithms is described in Section 4.1.3. Description of the experiments in detail is in Section 4.1.4. Section 4.2 describes and evaluates the obtained results.

4.1 Tools and methods

4.1.1 Parameters

Parameters used for the evaluation of the experiments are described in this section. Additionally, parameters, which were experimented with and changed during the evaluation, are stated. The default values of the parameters of external libraries or algorithms are not mentioned.

GLNS-CETSP algorithm

Table 4.1 shows the selected parameters of GLNS-CETSP that were chosen after initial experimentation with all possible values. These selected values of the parameters are the most suitable for the given configuration. Num_circles parameter is equal to the number of circles in the instance. Min is a function that finds a minimum value from two given values. The rest of the parameters is explained in Section 3.4 and Section 3.5 .

	Modes		
Parameters	Fast	Medium	Slow
$N_{\text {iter }}$	num_circles	$5 \cdot n u m _$circles	$10 \cdot$ num_circles
$N_{\text {cold }}$	2	5	10
$N_{\text {warm }}$	2	4	6
count $_{\text {first }}$	$N_{\text {iter }} / 4$	$N_{\text {iter }} / 4$	$N_{\text {iter }} / 4$
count $_{\text {latest }}$	$N_{\text {iter }} / 4$	$N_{\text {iter }} / 3$	$N_{\text {iter }} / 3$
$N_{\text {start }}$	$N_{\text {iter }} / 3$	-	-
$N_{\text {same }}$	5	-	-
$e_{\text {ref }}$	1×10^{-5}	1×10^{-5}	1×10^{-10}
limit $_{\text {iter }}$	1000	1000	10000
$N_{\text {move }}$	$\min \left(20,0.1 \cdot N_{\text {iter }}\right)$	$\min \left(100,0.3 \cdot N_{\text {iter }}\right)$	$0.4 \cdot N_{\text {iter }}$

Table 4.1: Parameters of GLNS-CETSP for three different modes. Num_circles value is the number of circles in a CETSP instance and min is function that selects the minimum from two given values.

GLNS-GTSP algorithm

Table 4.2 shows the selected parameters of $G L N S$ - $G T S P$ for the three modes of the algorithm.

	Modes		
Parameters	Fast	Medium	Slow
$N_{\text {iter }}$	num_circles	$10 \cdot$ num_circles	$20 \cdot$ num_circles
$N_{\text {cold }}$	3	5	6
$N_{\text {warm }}$	3	3	5
count $_{\text {first }}$	$N_{\text {iter }} / 6$	$N_{\text {iter }} / 4$	$N_{\text {iter }} / 6$
count $_{\text {latest }}$	$N_{\text {iter }} / 4$	$N_{\text {iter }} / 2$	$N_{\text {iter }} / 3$
$N_{\text {move }}$	$\min \left(20,0.1 \cdot N_{\text {iter }}\right)$	$\min \left(100,0.3 \cdot N_{\text {iter }}\right)$	$0.4 \cdot N_{\text {iter }}$

Table 4.2: Parameters of three modes of GLNS-GTSP algorithm. Num_circles value is the number of circles in GTSP instance and \min is function that selects the minimum from two given values.

PCP solver

When using the precomputed solution of PCP solver, a three-dimensional table with precomputed values is used. The relationship between two of points and a circle are described by PCP parameters $\left(a_{y}, s, \phi\right)$ each representing one dimension in the table. Ranges of precomputed values are given by parameters of the discrete interval (lower bound l, upper bound u, and increment i). Table 4.3 shows the selected values for these pairs of parameters (interval and PCP parameters). Memory usage of the table is approximately 880 MB . The specific values in the tables were assigned as follows:

- The parameters l and u of ϕ are fixed.
- The parameter l of a_{y} and s are fixed since in this case the radius of the circle is always equal to 1 .
- A preliminary experiment was performed to estimate the upper bound u on a_{y} and s. In the first step of the experiment, a set of values $\{10$, $20,30,40,50\}$ was created. In the second step, the same value of u on a_{y} and s was assigned from the set. For each value the number of cases when CPP parameters were outside of the bounds set by l and u (and therefore not in the precomputed table) were counted. In the third step, the value 40 was selected as the best in terms of the ratio between the number of cases exceeding the selected bounds and the memory usage of the precomputed table. Almost 98% of the cases were in the
precomputed table. The rest of the cases (2\%) were computed using the simplified version of solver.

Parameter i of ϕ, a_{y} and s was estimated.

	PCP parameters		
Interval parameters	a_{y}	s	ϕ
lower bound l	1.0	1.0	$-\frac{\pi}{2}$
upper bound u	40.0	40.0	$\frac{\pi}{2}$
step (increment) i	0.1	0.1	$\frac{\pi}{720}$

Table 4.3: Interval parameters of the three-dimensional table used to precompute parameters of PCP solver.

4.1.2 CETSP instances

Two types of CETSP instances were used in combination with maps without obstacles. The first type contains a set of all 62 instances from CETSPlib created by Mennell (2009) ${ }^{1}$ [5]. These instances consist of 17 to 1001 intersected circles and can be divided into three categories:

1. Circles with equal-sized radii in the instance.
2. Circle with arbitrary-sized radii in the instance. These instances are labeled by $r d m R a d$ at the end of the instance name.
3. Instances containing circles with an overlap ratio R, which specify the extent to which the circles overlap in the given instance. Three sets of various overlap ratios were proposed: very low $(\mathrm{R}=0.02)$, moderate $(\mathrm{R}=0.10)$ and very high $(\mathrm{R}=0.30)$.

The second type contains a set of 32 instances created by the developed generator of CETSP instances. These instances consist of 50 to 400 disjoint circles and are generated on four maps with obstacles. The obstacles are later omitted. The instances are divided into two categories: instances of circles of equal-sized radii and instances of circles with arbitrary-sized radii labeled by $r d m R a d$.

The measurements on the map with polygonal obstacles were carried out on a set of 64 CETSP instance produced by the generator of CETSP instances.

[^5]Each set of 16 instances is generated on a different map. A set of instances on each map contains from 50 to 400 intersecting and disjoint circles with the equal- or arbitrary-sized radii.

4.1.3 Tools

Suppose that the CETSP instance is solved $n_{\text {repeat }}$ times by an algorithm. The performance of the algorithm is compared based on the quality of the solutions and the measured computational times. The quality of the solutions is evaluated by two deviation equations $\% P D B$ and $\% P D M$. These equations are adopted from Faigl (2018) [8]. \%PDB (Eq.4.1) calculates the percentage deviation of the length of the shortest found tour from $n_{\text {repeat }}$ solutions $L_{\text {min }}$ from the length of the currently best found solution on the CETSP instance $L_{\text {opt }} . \% P D M(\mathrm{Eq} .4 .2)$ calculates the percentage deviation of the average length of the tour $L_{\text {avg }}$ from $L_{\text {opt }}$.

$$
\begin{align*}
& \% P D B=\frac{L_{\text {min }}-L_{\text {opt }}}{L_{\text {opt }}} \cdot 100 \tag{4.1}\\
& \% P D M=\frac{L_{\text {avg }}-L_{\text {opt }}}{L_{\text {opt }}} \cdot 100 \tag{4.2}
\end{align*}
$$

Computational time is computed as the median of all measured times for the $n_{\text {repeat }}$ solutions. Almost all used algorithms were evaluated on a computer with processor Intel(R) Core(TM) i5-6300HQ CPU @ 2.30 GHz and operation system Ubuntu 20.04.02 LTS. One exception is the heuristic SZ2, which was evaluated on a processor Intel Pentium E2220. Based on the CPU benchmark software ${ }^{2}$ is Intel Pentium 2.0 times slower than $\operatorname{Intel}(\mathrm{R})$ Core(TM) i5-6300HQ in single thread rating. Therefore, the computational times of $S Z 2$ proposed in [5] were divided by the constant of 2.0 .

4.1.4 Methods

This section describes the proposed experiments. All experiments were evaluated on CETSP instances. The performance of each algorithm was

[^6]
4. Experiments

measured by the quality of the solution defined by $\% P D B$ and $\% P D M$ values and the computation time. Due to the time consuming complexity of solving big instances, each instance containing up to 999 circles was solved 100 times while instances with 1000 and more circles were solved only 30 times.

The experiments were carried out in the following order. First, the performance of three different GLNS-CETSP modes (fast, medium, and slow) was compared on 13 instances containing up to 201 intersected circles with equal-sized and arbitrary-sized radii. The GSOA initialization heuristic, which was considered to be the best was used. Based on the results, the fast mode and the best algorithm configuration was selected and used from this point forward.

Second, four initialization heuristics (random_insertion, random, LKH, and GSOA) with GLNS-CETSP were compared on 47 instances containing intersected circles with equal-sized and arbitrary-sized radii and with three different overlap ratios. Based on the measured performance of GLNSCETSP with each initialization heuristic, the GSOA was selected as the best initialization heuristic, and it is used in the rest of the experiments.

Third, two versions of PCP solver simplified and precomputed were tested on 32 instances containing disjoint circles and 58 instances containing intersected circles both in combination with equal-sized and arbitrary-sized radii and with three different overlap ratios. Moreover, the number of solved $P C P$ problems per second for each version of $P C P$ was counted. The simplified version of PCP solver computes the solution analytically from the implemented equations. In comparison, the precomputed version of PCP solver uses a table of precomputed values. The simplified version of PCP performed the best in terms of the number of solved problems per second and it was used in the rest of the experiments.

Fourth, the GLNS-CETSP algorithm with the previously selected configurations was compared with other algorithms: SZ2 [5] based on the Steiner zones, $G S O A$ [8] based on the unsupervised learning procedure and $G L N S$-based algorithm [24] (GLNS-GTSP) solving GTSP on GTSP instances. GTSP instance is created from the CETSP instance by approximation of each circle in the instance by 24 equally distanced points.

Next, a new algorithm called $G S O A+T C P$ was proposed as a possible improved version of stand-alone $G S O A$ algorithm. The algorithm is a combination of GSOA [8] and TCP algorithms, where GSOA finds the tour T and $T C P$ shortens the length of T (improves T) on the given order of circles T^{C} if it is possible. GSOA requires the setting of several parameters.

All these parameters have default values as it was proposed in the original solution by Faigl (2018) [8]. TCP requires only two parameters ($e_{\text {ref }}$ and limit $_{i t e r}$) that have the same values as in the GLNS-CETSP defined in table 4.1. The algorithm $G S O A+T C P$ is compared with GSOA and GLNS-CETSP algorithms on all CETSP instances.

Finally, GLNS-CETSP were tested on 64 CETSP instances containing intersected and disjoint circles on four maps with polygonal obstacles (jarihuge, large, potholes and warehouse) generated by the generator of CETSP instances.

4.2 Results and Evaluation

This section describes the measured results. All results are in form of tables and placed in the Appendix B . The shortest computational time is highlighted for each instance in all tables that show computational times. Tables showing the quality of the found solutions contain $L_{o p t}$ value that refers to the best known solution for the given instance proposed by Mennell (2009) [5]. If any of the configurations of GLNS-CETSP algorithm found the new best solution or the solution is equal to currently best solution rounded to three decimal places, the $L_{\text {opt }}$ value is modified and highlighted. Otherwise, $L_{\text {opt }}$ value is not highlighted. The smallest $\% P D B$ and $\% P D M$ values for each instance are highlighted. The process of finding the smallest $\% P D B$ and $\% P D M$ values was carried out on values before they were rounded to two decimal places.

4.2.1 Modes of GLNS-CETSP

Tables B. 1 and B. 2 show the found solutions and computational times of different modes of GLNS-CETSP algorithm on instances containing only intersected circles with equal-sized and arbitrary-sized radii. The initialization heuristic of GLNS-CETSP is the GSOA algorithm.

GLNS-CETSP with mode fast is much faster than with other modes, as we can see in table B.1. As expected, the best quality of the solution is found by GLNS-CETSP with mode slow on all instances as shown in table B. 2 . This is because the slow mode prefers quality of solution over time taken to compute it.

Looking closely at $\%$ PDB and $\% P D M$ values in table B.2, we can see that these values are equal or almost the same in slow mode. This means that slow mode always finds the best solution or a solution very close to the best solution in each run of the algorithm. Comparing \%PDB value of fast mode and slow mode, the \%PDB values of fast mode are close to or almost the same as \%PDB values found by slow mode.

Overall, these results indicate that GLNS-CETSP with mode fast should be considered the best in terms of the ratio of the quality of solution and computational requirements.

4.2.2 Initialization heuristics

The performances of four different initialization heuristics with GLNS-CETSP are shown in the following tables:

- Tables B.3, B. 4 show the results for instances containing intersected circles with equal-sized radii.
- Tables B.5, B. 6 show the results for instances containing intersected circles with arbitrary-sized radii.
- Tables B.7, B. 8 show the results for instances containing intersected circles with three different overlap ratios.

The results shown in tables B.4, B. 6 and B. 8 revealed a significant difference between the quality of the solutions depending on initialization heuristic used. Initialization heuristic $G S O A$ found the best initial tour out of the three initialization heuristics. This lead to identification of the solution with the best quality by GLNS-CETSP as we can see in the tables. Values \%PDB and \%PDM of GLNS-CETSP using GSOA are the lowest in nearly all solutions. Surprisingly, GLNS-CETSP using GSOA is not always the fastest solution as shown in tables B.3, B. 5 and B.7. In more than half of the solutions random_insertion method used as initialization heuristic was the fastest, but the difference in speed is not so great. The possible explanation is that GLNS-CETSP using random_insertion was terminated earlier than the others with worse quality of initial tour. Example supporting this explanation is the instance bubbles5, where GLNS-CETSP using random_insertion found the worst quality of solution in the shortest time.

Overall, GLNS-CETSP using GSOA is considered to be the best algorithm and initialization heuristic combination despite the fact that it has not always found the best quality solution in the shortest possible time.

4.2.3 Simplified and precomputed versions of PCP

The results obtained for GLNS-CETSP using simplified PCP solver and GLNS-CETSP using precomputed version of $P C P$ solver are shown in the following tables:

- Tables B.9, B.10 show the results for instances containing intersected circles with equal-sized radii.
- Tables B.11, B. 12 show the results for instances containing intersected circles with arbitrary-sized radii.
- Tables B.13, B.14 show the results for instances containing disjoint circles with equal-sized radii.
- Tables B.15, B.16 show the results for instances containing disjoint circles with arbitrary-sized radii.

The expected results for the simplified and precomputed versions of PCP were that the GLNS-CETSP using simplified version of the solver would find the best quality results but in longer time period than GLNS-CETSP using precomputed version. Unexpectedly, the GLNS-CETSP using simplified version found the results faster and with the better quality of solutions than GLNS-CETSP using precomputed version on the majority of instances as shown in tables B.9, B.10, B.11, B.12, B.13, B.14, B.15, and B.16. There are two reasons why the precomputed version takes longer to find the solution than the simplified version:

1. The quality of solution of precomputed version is better than the simplified version at a cost of prolonged computational time.
2. Since, the precomputed version of PCP approximated points based on the values from precomputed table, it can lead to increased number of iterations of GLNS-CETSP algorithm.

The number of solved PCP problems per second for each version is the following:

4. Experiments

- Simplified version of PCP solves approximately 22900 PCP problems per second.
- Precomputed version of PCP solves approximately 37420 PCP problems per second.

From the obtained results it is clear that the precomputed version of PCP solver is faster than the simplified version.

4.2.4 Comparison of GLNS-CETSP with other algorithms

The performance of GLNS-CETSP is compared with SZ2, GSOA, and GLNSGTSP algorithms. The following tables show the results, where the $\% P D M$ value of $S Z 2$ heuristic is not known and therefore is not mentioned:

- Tables B.17, B. 18 show the results for instances containing intersected circles with equal-sized radii.
- Tables B.19, B. 20 show the results for instances containing intersected circles with arbitrary-sized radii. Computational time of SZ2 heuristic is not known and therefore $S Z 2$ heuristic is not mentioned.
- Tables B.21, B.22 show the results for instances containing intersected circles with three different overlap ratios.
- Tables B.23, B.24 show the results for instances containing disjoint circles with equal-sized radii. $S Z 2$ heuristic has not been solved on these instances.
- Tables B.25, B.26 show the results for instances containing disjoint circles with arbitrary-sized radii. SZ2 heuristic has not been solved on these instances.

Looking at the quality of solution, the GLNS-CETSP finds solution that is the new best or is equal to the currently best solution in 47 out of 62 instances consisting of intersecting circles, and 32 out of 32 instances consisting of disjoint circles, as the tables B.17, B.19, B.21, B.23, B. 25 show. Instances on which the solutions have significantly improved compared to the solutions proposed by Mennell (2009) [5] are the following:

- bonus1000
- bonus1000rdmRad
- bubbles4
- bubbles6
- bubbles7
- bubbles8
- bubbles9
- team2_200rdmRad
- team6_500rdmRad
- dsj100rdmRad
- pcb442rdmRad
- pcb442 with overlap ratio $R=0.10$

Example of best found solution is on figures 4.1 and 4.2. On the other hand, the solved instance by $G L N S-C E T S P$ with the worst result is $d s j 1000$ with overlap ration $\mathrm{R}=0.30$, where the value $\% \mathrm{PDB}=7.17$. The other algorithms solve the instance $d s j 1000$ with following $\% \mathrm{PDB}$ values:

- $G S O A$ with value $\% \mathrm{PDB}=6.18$
- GLNS-GTSP with value $\% \mathrm{PDB}=228.57$

Comparing the computational requirements, the $G S O A$ is the fastest algorithm on all instances as we can see in the tables B.18, B.20, B.22, B.22, B .24 and B.26. Comparing GLNS-CETSP and SZ2, the GLNS-CETSP algorithm is faster for instances containing up to 200 intersected circles and for instances with low overlap ratio. The GLNS-GTSP was the slowest and worst performing algorithm of them all.

4.2.5 GSOA+TCP

The following tables show the comparison of the performance of $G S O A+T C P$ with GLNS-CETSP and GSOA algorithms:

- Tables B.27, B.28 show the results for instances containing intersected circles with equal-sized radii.
- Tables B.29, B.30 show the results for instances containing intersected circles with arbitrary-sized radii.
- Tables B.31, B. 32 show the results for instances containing intersected circles with three different overlap ratios.

As mentioned previously, GSOA algorithm found the solution in the shortest computational time on all instances. Since the stand-alone TCP algorithm is fast, the $G S O A+T C P$ algorithm is only slightly slower than $G S O A$. In comparison, the computational time of GLNS-CETSP are much longer on instances with high number of circles (more than 300 circles), as we can see on tables B.28, B.30, and B.32.

GLNS-CETSP algorithm finds the best quality solutions (lowest \%PDB and $\% \mathrm{PDM}$ values) on nearly all instances. $T C P$ improves the quality of the solution, therefore $G S O A+T C P$ finds better quality solutions than GSOA. However, the improvement is not enough to reach better quality solution than the one obtained using GLNS-CETPS, as shown in the tables B.27, B.29, and B. 31 .

There are some instances with solutions that were not expected. For example, the best quality solutions on instances $d 493$ and $d s j 1000$ with overlap ratio $\mathrm{R}=0.30$ were found by $G S O A$ algorithm and $G S O A+T C P$ found significantly worse quality of solutions. The possible explanation is that due to the high overlap ratio, the GSOA found the order of circles on which $T C P$ lengthened the tour. The instances are too complex even for GLNS-CETSP as it was not able to find the best quality solution.

4.2.6 Environment with polygonal obstacles

Table B.33 shows solved instances on the four maps with obstacles. These instances are solved only using the GLNS-CETSP solving obstacles. Therefore, $\% P D B$ value is not used.

On average, the best quality solutions with lowest \%PDM values and the shortest computational times for environments with polygonal obstacles were found on the map potholes as the table B.33 shows. Comparing the instances
with disjoint and intersected circles on all maps, the GLNS-CETSP algorithm found the best quality solutions (lowest \%PDM) on instances consisting of intersected circles. On the other hand, the solution is found faster on instances consisting of disjoint circles.

(a) : Solved instance Jarihuge200rdmRad

(b) : Solved instance Large100rdmRad

(c) : Solved instance Potholes50

Figure 4.2: Example of best found solutions on instances with disjoint circles

Chapter 5

Discussion

The proposed GLNS-CETSP algorithm combines PCP, GLNS, and TCP algorithms to create an effective method to solve all types of CETSP problems $\left(C E T S P_{\text {dis }}\right.$, CETSP $_{\text {int }}$, CETSP $_{\text {obst_dis }}$, and CETSP $\left.P_{\text {obst_int }}\right)$. The achieved results confirm that the final algorithm indeed is an effective method. Looking at the quality of the solutions, the majority of results for the $C E T S P_{\text {int }}$ problem show solutions that are better than or equal to the currently bestknown solution obtained by Mennell (2009) [5. Moreover, the instances used in CETSP $P_{\text {dis }}$, CETSP $_{\text {obst_dis }}$, and CETSP $P_{\text {obst_int }}$ problems were generated and also solved by GLNS-CETSP for the future comparisons of results with other algorithms.

When comparing the computational times, it can be observed that the GLNS-CETSP algorithm is fast on instances containing up to 200 circles. In instances consisting of up to 150 intersected circles with low overlap ratio, the GLNS-CETSP algorithm is even faster than SZ2 heuristic [5. However, the GLNS-CETSP is slow for larger instances containing more than 200 circles which makes it suitable only in applications that are not limited by computation time or when the quality of the solution is preferred over the computational time.

A second new algorithm $G S O A+T C P$ was also proposed, which is suitable for applications when the computational time is limited. The $G S O A+T C P$ is a combination of GSOA and TCP algorithms, where GSOA finds the solution and $T C P$ improve this solution with the fixed order of circles. Since stand-alone $T C P$ and stand-alone $G S O A$ are fast, $G S O A+T C P$ is slightly slower than $G S O A$. Although the $G S O A+T C P$ is slower than the GSOA,

5. Discussion

the significantly improved solution is worth the little extra time gained by the addition of TCP in the majority of cases. However, it is not suitable for applications that are not limited by time as there are algorithms such as the GLNS-CETSP that produce a higher quality of results.

For applications that find both time and quality important, it is advised to use GLNS-CETSP for environments with up to around 500 circles and $G S O A+T C P$ for environments with a larger number of circles to balance the quality/time trade-off.

The experiments carried out were limited, especially in instances with more than 999 circles. It is noteworthy that the number of repetitions carried out for these instances was limited to only 30, compared to the number of repetitions carried out for smaller environments where the number of repetitions was 100 . The limitation may have a negative effect on the $\% \mathrm{PDM}$ value or the final computational time considered for these instances, as 30 repetitions and even 100 repetitions may not be enough to obtain adequate results. Some of the unexpected results obtained throughout the experiments may be attributed to the low number of repetitions.

Additionally, the results of simplified and precomputed versions of PCP solver should be studied more in the future. Looking at the speed of the PCP solvers individually and in combination with the GLNS-CETSP, there is a possibility of fine-tuning the precomputed version so that in combination with the GLNS-CETSP it fulfils its potential of being faster than the other version. Last but not least, further investigation of unexpected results observed in instances $d_{4} 93$ and $d s j 1000$ with overlap ratio $\mathrm{R}=0.30$ is recommended. An explanation has already been proposed in the previous section, however, a solution to these situations has not yet been offered.

Chapter 6

Conclusion

In this thesis, the new heuristic method GLNS-CETSP was proposed to solve CETSP problem in polygonal domain on maps with and without obstacles. The heuristic method combines three algorithms: $P C P, G L N S$ and $T C P$. $P C P$ is a technique of finding the shortest path between two points and a circle. The main idea of $P C P$ was inspired by light reflection theory and uses a set of derived equations to find the shortest path. These equations were inspired by the solution proposed by Chou (2008) [23]. However, equations from the original solution contain several transpiring errors that prevent us from using these equations. Two versions of $P C P$ were proposed: simplified and precomputed. The simplified version finds the shortest path using the equations and the precomputed version finds the shortest path using the precomputed values in the table. GLNS is a solver of the GTSP problem which was modified to solve the CETSP problem. TCP improved the solution on the fixed order of circles and it was used as a tour optimization technique of the heuristic method.

Several GLNS-CETSP configurations were compared and the best configuration was selected. The configuration is given by the mode of GLNS-CETSP (fast, medium, slow), initialization heuristic (random_insertion, random, GSOA, and LKH) and two versions of PCP. Based on the results, the GLNSCETSP containing fast mode, GSOA initialization heuristic and simplified version of $P C P$ were considered as the best configuration. GLNS-CETSP using this configuration finds the best solutions based on the ratio of the quality of the solution and computational time.

Next, the new CETSP instances were generated on four maps (jari-huge,

6. Conclusion

large, potholes and warehouse) by developed generator of CETSP instances. The CETSP instances contain from 50 to 400 intersected and disjoint circles with equal-sized and arbitrary-sized radii, and the number of generated instances is 64 in total. These instances can be used for CETSP problems with and without polygonal obstacles.

The results of GLNS-CETSP with the best configuration were compared with several state of the art algorithms such as SZ2, GSOA, and GLNS-GTSP on instances from CETSP-lib and the generated CETSP instances. The best-known solutions for instances in CETSP-lib were used from Mennell (2009) [5]. GLNS-GTSP is a GLNS solver of GTSP problem. In case of GLNS-GTSP algorithm, each CETSP instance is transformed into GTSP problem by approximation of each circle by 24 points. Comparing the quality of the solution, in 75% cases the $G L N S-C E T S P$ found on instances from CETSP-lib a new best solution or a solution that is equal to the currently best solution. GSOA found worse quality results in all cases. Comparing the computational time, GSOA was very fast even on large instances (instances containing more than 500 circles). GLNS-CETSP was faster than SZ2 on instances containing up to 150 circles and with low overlap ratio. GLNSCETSP is slow on large instances (computational time is approximately 220 second on instance contains 1000 circles) and is not suitable in applications where the time is limited and large instances are used. However, comparing GLNS-CETSP and GLNS-GTSP, GLNS-CETSP is four times faster even on large instances and finds better solutions.

Because of the time consumption of GLNS-CETSP on large instances, a second new algorithm $G S O A+T C P$ was proposed. The $G S O A+T C P$ is a combination of GSOA and TCP algorithms, where GSOA finds the solution and $T C P$ improve this solution with the fixed order of circles. Since $T C P$ is fast GSOA + TCP is only slightly slower than stand-alone GSOA. Comparing the quality of the solutions, $G S O A+T C P$ finds better solutions than GSOA, but worse than GLNS-CETSP. Therefore, GSOA $+T C P$ is an improved version of GSOA that is much faster than GLNS-CETSP and should be used especially in applications where the computational time is limited and where the instances contain more than 500 circles.

Finally, GLNS-CETSP was extended to solve the generated CETSP instances on maps with polygonal obstacles.

Appendix \mathbf{A}

Bibliography

[1] O. Tekdas, V. Isler, J. H. Lim, and A. Terzis, "Using mobile robots to harvest data from sensor fields," IEEE Wireless Communications, vol. 16, no. 1, pp. 22-28, 2009. [Online]. Available: https://doi.org/10.1109/MWC.2009.4804365
[2] B. Yuan, M. Orlowska, and S. Sadiq, "On the optimal robot routing problem in wireless sensor networks," IEEE transactions on knowledge and data engineering, vol. 19, no. 9, pp. 1252-1261, 2007. [Online]. Available: https://doi.org/10.1109/TKDE.2007.1062
[3] S. Alatartsev, V. Mersheeva, M. Augustine, and F. Ortmeier, "On optimizing a sequence of robotic tasks," in Proceedings of the International Conference on Intelligent Robots and Systems (IROS). IEEE, 2013. [Online]. Available: https://cse.cs.ovgu.de/cse-wordpress/ wp-content/uploads/2015/05/Alatartsev_IROS2013.pdf
[4] S. Dubowsky and T. Blubaugh, "Planning time-optimal robotic manipulator motions and work places for point-to-point tasks," IEEE Transactions on Robotics and Automation, vol. 5, no. 3, pp. 377-381, 1989. [Online]. Available: https://doi.org/10.1109/70.34775
[5] M. William Kenneth, "Heuristics for solving three routing problems: Close-enough traveling salesman problem, close-enough vehicle routing problem, sequence-dependent team orienteering problem," Ph.D. dissertation, Digital Repository at the University of Maryland, 2009. [Online]. Available: http://hdl.handle.net/1903/9822
[6] W. P. Coutinho, R. Q. d. Nascimento, A. A. Pessoa, and A. Subramanian, "A branch-and-bound algorithm for the close-enough traveling salesman
problem," INFORMS Journal on Computing, vol. 28, no. 4, pp. 752-765, 2016. [Online]. Available: https://doi.org/10.1287/ijoc.2016.0711
[7] B. Behdani and J. C. Smith, "An integer-programming-based approach to the close-enough traveling salesman problem," INFORMS Journal on Computing, vol. 26, no. 3, pp. 415-432, 2014. [Online]. Available: https://doi.org/10.1287/ijoc.2013.0574
[8] J. Faigl, "Gsoa: Growing self-organizing array - unsupervised learning for the close-enough traveling salesman problem and other routing problems," Neurocomputing, vol. 312, pp. 120-134, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231218306647
[9] M. Antonescu and C. Bîră, "Discrete gravitational search algorithm (dgsa) applied for the close-enough travelling salesman problem (tsp / cetsp)," in 2019 International Semiconductor Conference (CAS), 2019, pp. 123-126. [Online]. Available: http://doi.org/10.1109/SMICND.2019. 8923719
[10] D. Sinha Roy, B. Golden, X. Wang, and E. Wasil, "Estimating the tour length for the close enough traveling salesman problem," Algorithms, vol. 14, no. 4, 2021. [Online]. Available: https: //www.mdpi.com/1999-4893/14/4/123
[11] D. J. Gulczynski, J. W. Heath, and C. C. Price, The Close Enough Traveling Salesman Problem: A Discussion of Several Heuristics. Boston, MA: Springer US, 2006, pp. 271-283. [Online]. Available: https://doi.org/10.1007/978-0-387-39934-8_16
[12] J. Dong, N. Yang, and M. Chen, Heuristic Approaches for a TSP Variant: The Automatic Meter Reading Shortest Tour Problem. Boston, MA: Springer US, 2007, pp. 145-163. [Online]. Available: https://doi.org/10.1007/978-0-387-48793-9_10
[13] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, "The quickhull algorithm for convex hulls," ACM Trans. Math. Softw., vol. 22, no. 4, p. 469-483, Dec. 1996. [Online]. Available: https://doi.org/10.1145/235815.235821
[14] K. Helsgaun, "An effective implementation of the lin-kernighan traveling salesman heuristic," European Journal of Operational Research, vol. 126, no. 1, pp. 106-130, 2000. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0377221799002842
[15] M. Dror, A. Efrat, A. Lubiw, and J. S. B. Mitchell, "Touring a sequence of polygons," in Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, ser. STOC '03. New York, NY, USA: Association for Computing Machinery, 2003, p. 473-482. [Online]. Available: https://doi.org/10.1145/780542.780612
[16] C. Bliek1ú, P. Bonami, and A. Lodi, "Solving mixed-integer quadratic programming problems with ibm-cplex: a progress report," in Proceedings of the twenty-sixth RAMP symposium, 2014, pp. 16-17.
[17] F. Carrabs, C. Cerrone, R. Cerulli, and M. Gaudioso, "A novel discretization scheme for the close enough traveling salesman problem," Computers \& Operations Research, vol. 78, pp. 163-171, 2017. [Online]. Available: https://doi.org/10.1016/j.cor.2016.09.003
[18] F. Carrabs, C. Cerrone, R. Cerulli, and C. D'Ambrosio, "Improved upper and lower bounds for the close enough traveling salesman problem," in Green, Pervasive, and Cloud Computing, M. H. A. Au, A. Castiglione, K.-K. R. Choo, F. Palmieri, and K.-C. Li, Eds. Cham: Springer International Publishing, 2017, pp. 165-177. [Online]. Available: https://doi.org/10.1007/978-3-319-57186-7__14
[19] T. Kohonen, Self-organizing maps. Springer Science \& Business Media, 2012, vol. 30.
[20] G. Reinelt, "Tsplib-a traveling salesman problem library," ORSA journal on computing, vol. 3, no. 4, pp. 376-384, 1991. [Online]. Available: https://doi.org/10.1287/ijoc.3.4.376
[21] X. Wang, B. Golden, and E. Wasil, "A steiner zone variable neighborhood search heuristic for the close-enough traveling salesman problem," Computers \& Operations Research, vol. 101, pp. 200-219, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S0305054818302132
[22] A. Bondy and U. Murty, Graph Theory. Springer, c2008.
[23] S.-Y. Chou, C.-C. Chou, and Y.-K. Chen, "A base function for generating contour traversal paths in stereolithography apparatus applications," Expert Syst. Appl., vol. 35, pp. 235-244, 072008.
[24] S. L. Smith and F. Imeson, "Glns: An effective large neighborhood search heuristic for the generalized traveling salesman problem," Computers § Operations Research, vol. 87, pp. 1-19, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0305054817301223
[25] G. Gutin and D. Karapetyan, "A memetic algorithm for the generalized traveling salesman problem," Natural Computing, vol. 9, no. 1, pp. 47-60, 2010. [Online]. Available: http://link.springer.com/10.1007/ s11047-009-9111-6
[26] S. Ropke and D. Pisinger, "An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows," Transportation Science, vol. 40, no. 4, pp. 455-472, 2006. [Online]. Available: http://pubsonline.informs.org/doi/abs/10.1287/trsc.1050. 0135
[27] M. Cui, D. D. Harabor, and A. Grastien, "Compromise-free pathfinding on a navigation mesh," in Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, 2017, pp. 496-502. [Online]. Available: https://doi.org/10.24963/ijcai.2017/70
[28] L. Paul Chew, "Constrained delaunay triangulations," Algorithmica, vol. 4, no. 1-4, pp. 97-108, 1989. [Online]. Available: http: //link.springer.com/10.1007/BF01553881
[29] "Fade2d documentation," c2021. [Online]. Available: https://www.geom. at/fade2d/html/
[30] D. Woller, "Search for sources of gamma radiation," Ph.D. dissertation, 2019. [Online]. Available: https://dspace.cvut.cz/handle/10467/83422
[31] J. Vidašič, "Travelling salesman problem with neighborhoods," Ph.D. dissertation, 2020. [Online]. Available: http://hdl.handle.net/10467/ 88069

Appendix B

Tables of results

CETSP instances	N_{c}	Fast	Medium	Slow
		$\mathrm{T}[\mathrm{s}]$	$\mathrm{T}[\mathrm{s}]$	T[s]
bubbles1	37	0.007	0.162	0.712
bubbles2	77	0.030	1.620	6.191
bubbles3	127	0.120	5.525	27.482
chaoSingleDep	201	0.331	22.733	107.122
concentricCircles1	17	0.002	0.032	0.127
concentricCircles2	37	0.007	0.136	0.702
concentricCircles3	61	0.018	0.483	2.441
kroD100rdmRad	100	0.051	2.505	13.362
rotatingDiamonds1	21	0.003	0.054	0.248
rotatingDiamonds2	61	0.016	0.501	2.442
rotatingDiamonds3	181	0.248	28.396	86.377
team1_100	101	0.069	29.269	14.695
team1_100rdmRad	101	0.056	3.375	15.345

Table B.1: Comparison of computational times of three different modes of GLNS-CETSP. Initial heuristic is GSOA in all cases. The shortest time is bold for each measured CETSP instance.

00%	00\％ 0	$00 \cdot 0$	$00 \cdot 0$	96．	$00 \cdot 0$	דG．888	L0I	
00%	$00^{\circ} 0$	L0．0	00°	ZI．0	00°	7¢ ${ }^{\circ} \mathbf{2 0 8}$	L0I	001 ${ }^{\text {－}}$［廿еәт
00%	00%	00°	$00 \cdot 0$	87°	$00 \cdot 0$	88．088	L8I	
00%	$00 \cdot 0$	00°	00°	$6 \mathrm{I}^{\circ} 0$	00°	$8 \overline{7}^{\circ} 0$ 历I	L9	
00%	00%	00°	$00 \cdot 0$	00°	00°	68．78	L\％	
70\％	$00^{\circ} 0$	L $7 \cdot 0$	$70 \cdot 0$	L $E^{\circ} 7$	$90^{\circ} 0$	\＆8＊${ }^{\text {¢ }}$［	00I	
$90^{\circ} 0$	00%	$08^{\circ} 0$	$00 \cdot 0$	66°	ZI．0	10．02\％	L9	
10\％	00%	$9 \Psi^{\circ} 0$	$00 \cdot 0$	70 ${ }^{\circ}$	$00 \cdot 0$	\＆I＇EGI	28	
00%	$00^{\circ} 0$	00°	$00 \cdot 0$	70．0	$00 \cdot 0$	91•8⿷	LI	
00%	$00 \cdot 0$	$00 \cdot 0$	$00 \cdot 0$	$60^{\circ} \mathrm{T}$	$00 \cdot 0$	［9＊680］	L0\％	
00%	$00^{\circ} 0$	$00 \cdot 0$	$00 \cdot 0$	EI＇0	$00 \cdot 0$	96．67c	LZI	๕sərqquq
00%	$00^{\circ} 0$	00°	$00 \cdot 0$	ZI．0	00°	87＊87历	LL	zsərqqnq
00%	$00 \cdot 0$	$00 \cdot 0$	$00 \cdot 0$	［0．0	$00 \cdot 0$	\＆ $1 \times 6 \pm$ ¢	28	［səpqqnq
NTd\％	g ${ }^{\text {d }}$ \％	WUd\％	g ${ }^{\text {d }}$ \％	NTC\％	¢ ${ }^{\text {d }}$ \％			
MoIS		un！̣pə入		${ }^{\text {7SeH }}$ H		${ }^{7 d o} T$	${ }^{3} N$	səวuセzsu！dSLABP

CETSP instances	N_{c}	Random insertion	Random	LKH	GSOA
		$\mathrm{T}[\mathrm{s}]$	$\mathrm{T}[\mathrm{s}]$	$\mathrm{T}[\mathrm{s}]$	$\mathrm{T}[\mathrm{s}]$
bubbles1	37	0.005	0.005	0.005	0.007
bubbles2	77	0.025	0.033	0.029	0.030
bubbles3	127	0.103	0.133	0.110	0.120
bubbles4	185	0.310	0.395	0.326	0.333
bubbles5	251	0.786	0.912	0.795	0.844
bubbles6	325	2.111	2.228	1.802	1.984
chaoSingleDep	201	0.342	0.409	1.769	0.331
concentricCircles1	17	0.001	0.001	0.002	0.002
concentricCircles2	37	0.004	0.004	0.010	0.007
concentricCircles3	61	0.010	0.012	0.053	0.018
concentricCircles4	105	0.046	0.051	0.089	0.072
concentricCircles5	149	0.126	0.134	0.215	0.154
rotatingDiamonds1	21	0.002	0.002	0.003	0.003
rotatingDiamonds2	61	0.015	0.011	0.033	0.016
rotatingDiamonds3	181	0.241	0.236	0.269	0.248
rotatingDiamonds4	321	1.372	1.715	1.738	1.502
team1_100	101	0.052	0.068	0.080	0.069
team2_200	201	0.877	1.242	1.283	0.882
team3_300	301	1.498	2.141	2.074	1.779
team4_400	401	4.261	5.149	4.793	4.798

Table B.3: Comparison of computation time of GLNS-CETSP algorithm for four initialize heuristics (random insertion, random, LKH and GSOA). Instances consisting of intersected circles with equal-sized radii.

80％	$00 \% 0$	L9｀9	79．7	¢C．9	Li ${ }^{\circ}$	$9 G^{\circ} 9$	$8 L^{\circ} 7$	$89 * 029$	［0才	
99＇万	$00 \% 0$		¢9＊0	现 9	99°		$79^{\circ} 0$	98．${ }^{\text {89才 }}$	T0¢	
LT0	00%	$98^{\circ} 0$	L0．0	L900	$70^{\circ} 0$	$87^{\circ} 0$	L0．0	89＊9才て	［0\％	$007^{\text {－}}$ 飞Шеәд
$\boldsymbol{Z I} \cdot 0$	$00 \cdot 0$	07^{\prime} I	$00 \cdot 0$	66.0	00°	LT＇I	$00^{\circ} 0$	¢¢ 208	I0L	
$98^{\circ} 7$	70\％	62． 7	$80 \cdot 0$	$8 L^{\circ} 9$	70.0	87\％	70.0	99．0L2	LZ¢	
$87^{\circ} 0$	$00 \cdot 0$	020	L0．0	06.0	L0．0	96.0	L0．0	88．088	I8I	
$6 I^{\circ} 0$	$00 \cdot 0$	78．0	$00 \cdot 0$	86.0	00°	［8．0	00°	$87^{\circ} 0$ T $^{\text {I }}$	L9	ZSpuour！̣åu！̣еұол
00\％0	$00 \cdot 0$	00°	$00 \cdot 0$	20.0	$00 \cdot 0$	00.0	00.0	6¢ ${ }^{-7 ¢}$	L 7	
6I＇Z	$00 \cdot 0$	$80^{\circ} \mathrm{C}$	9 $4^{\circ} 0$	$78 \cdot 8$	77°	¢0． 8	$90^{\circ} 0$	\＆1．硅	671	
82．0	00%	79 ${ }^{\circ}$	97^{\prime} I	66.8	$66^{\circ} 0$	81＇t	$67^{\circ} \mathrm{I}$		G0L	
86．0	01．0	$89^{\circ} 7$	L $E^{\circ} 0$	L6．${ }^{\circ}$	07°	汭 7	00＊0	モ0\％0LZ	L9	
70＊	$00 \cdot 0$	$79^{\circ} 7$	$07^{\circ} 0$	79\％	70．0	$\angle 7^{\circ} \mathrm{O}$	70.0	EL．EGT	LE	
70．0	$00 \cdot 0$	现0	$00 \cdot 0$	01．0	00°	80°	$00^{\circ} 0$	9T•E¢	LI	
$60^{\circ} \mathrm{L}$	$00 \cdot 0$	LI＇I	$00 \cdot 0$	79．${ }^{\circ}$	00°	$\angle 0^{\circ} \mathrm{I}$	$00^{\circ} 0$	［9＊680］	［07	
$07^{*} 8$	$08^{\circ} 7$	79＊6	L8．0	［G6	\＆8．${ }^{\text {I }}$	L9．6	00＊0	90．2もあ	¢ \％¢	9 səqqunq
$98^{\circ} \mathrm{E}$	$00^{\circ} 0$	¢ $5^{\circ} 9$	78°	$99^{\circ} 9$		¢ $\square^{\circ} \mathrm{G}$	珧	もG．0才0工	T9\％	cserqquq
L9＊0	00%	$6 \nabla^{\circ} \mathrm{Z}$	$99^{\circ} 0$	\＆9\％	L200	$98^{\circ} 7$	¢ $7^{\circ} 0$		981	Łsəpqqnq
\＆I＇0	$00 \% 0$	$0 \square^{\circ} 0$	$00 \cdot 0$	閏0	$00^{\circ} 0$	閏0	$00^{\circ} 0$	96．679	LZI	๕səqqquq
$\boldsymbol{Z I}{ }^{\circ}$	$00 \% 0$	¢ $7^{\circ} 0$	$00 \cdot 0$	LE0	00°	¢T0	$00^{\circ} 0$	87＊87才	$\angle L$	\％səqqqnq
L0\％	$00 \% 0$	200	$00 \cdot 0$	$90^{\circ} 0$	$00^{\circ} 0$	¢0\％	$00^{\circ} 0$	\＆${ }^{\circ} 6 \boldsymbol{6}$ ¢	LE	［səqqquq

WUd\％GGd\％	NUd\％GGd\％	NGd\％GGd\％	NUd\％GGd\％			
VOSゆ	НУТ	wopuey	uо！̣｜əəsu！uopuey	${ }^{7 d o} T$	${ }^{3} N$	səวurłsu！dSLATD

CETSP instances	N_{c}	Random insertion	Random	LKH	GSOA
		$\mathrm{T}[\mathrm{s}]$	$\mathrm{T}[\mathrm{s}]$	T[s]	$\mathrm{T}[\mathrm{s}]$
kroD100rdmRad	100	0.044	0.056	0.067	0.051
lin318rdmRad	318	2.816	2.973	3.069	2.358
pcb442rdmRad	442	8.629	11.605	8.926	7.419
rat195rdmRad	195	1.315	1.546	1.578	1.301
rd400rdmRad	400	3.486	5.820	3.785	4.875
team1_100rdmRad	101	0.049	0.068	0.078	0.056
team2_200rdmRad	201	0.357	0.418	0.502	0.419
team3_300rdmRad	301	3.870	5.281	4.811	4.124
team4_400rdmRad	401	3.741	5.427	4.229	4.666

Table B.5: Comparison of computation time of GLNS-CETSP algorithm for four initialize heuristics (random insertion, random, LKH and GSOA). Instances consisting of intersected circles with arbitrary radii.

68.7	00.0	81.0	60° I	\＆9．${ }^{\text {² }}$	$8 L^{\prime} \%$	87＇\％	07.7	86．2001	107	
$89^{\prime} \mathrm{z}$	$00 \cdot 0$	$29^{\circ} \mathrm{t}$	¢0．0	$8 \mathrm{t}^{\prime \prime}$	$80^{\circ} 0$	78.7	$80^{\circ} 0$	60．828	108	реуиир：00¢ ¢ ¢иеәт
82．	00%	c0＇t	28.0	99^{*} t	L9．0	$9 \mathrm{It}^{\text {¢ }}$	$05^{\circ} 0$	06. ¢ 5	$\underline{10 \%}$	
	00%	¢0＇	00°	$00^{\text {¢ }}$	00°	28°	00°	¢¢ 888	L0I	
86.7	¢ ¢ ${ }^{\text {T}}$	$\angle 6^{\circ}$	78． 7	¢でG	29.8	96.	モ0\％	88．7975	007	реуиир．о0тр．
80%	00%	86.0	900	960	80°	82．0	$70^{\circ} 0$	z7＊89	¢61	редupig6itex
${ }^{16} \%$	00%	$\dagger 7^{\circ} \mathrm{C}$	\＆1＇	$9 \mathrm{~T}^{\circ} \mathrm{G}$	$85^{\circ} \mathrm{L}$	L2＇も	¢8．0	72．61\％	2切	речuиpızitqod
$8 \mathrm{C} \cdot \mathrm{G}$	\％ 9^{\cdot}［	68.9	$89^{\circ} \mathrm{L}$	29.9	$09^{\text {I }}$	$76 \cdot 9$	00%		8IE	
L\＆ 7	50\％	26.7	LE\％	L6．$\%$	980	¢8．${ }^{\text {\％}}$	$67^{\circ} 0$	¢8．Itt	001	peyuprontgory
NGd\％	GGd\％	NGd\％	GUd\％	NGd\％	gGd\％	NGd\％	gGd\％			
VOSŋ		НУТ		шориеу		ио！̣ıәsu！шориеу		${ }^{7 d o}$ T	${ }^{3} \mathrm{~N}$	

Tables of results

CETSP instances	N_{c}	Random insertion	Random	LKH	GSOA
		$\mathrm{T}[\mathrm{s}]$	$\mathrm{T}[\mathrm{s}]$	$\mathrm{T}[\mathrm{s}]$	$\mathrm{T}[\mathrm{s}]$
Overlap ratio $\mathrm{R}=0.02$					
kroD100	100	0.033	0.043	0.062	0.052
lin318	318	1.465	2.098	1.710	1.856
pcb442	442	4.770	7.055	5.545	6.151
rat195	195	0.263	0.318	0.308	0.344
rd400	400	3.733	4.312	3.766	4.562
Overlap ratio $\mathrm{R}=0.10$					
kroD100	100	0.057	0.084	0.093	0.064
lin318	318	2.304	3.027	2.689	2.179
pcb442	442	7.396	10.169	10.000	7.251
rat195	195	0.563	0.825	0.703	0.618
rd400	400	4.710	6.795	5.803	4.656
Overlap ratio $\mathrm{R}=0.30$					
kroD100	100	0.136	0.210	0.222	0.131
$\operatorname{lin318}$	318	7.943	11.503	12.474	7.091
pcb442	442	25.263	45.502	40.136	23.329
rat195	195	1.163	2.164	2.184	1.056
rd400	400	17.751	25.528	27.608	17.674

Table B.7: Comparison of computation time of GLNS-CETSP algorithm for four initialize heuristics (random insertion, random, LKH and GSOA). Instances are sorted by three different overlap ratios.

¢ $\bullet^{\circ} 0$	$80^{\circ} 0$	¢9＊0	ZI．0	19＊0	GI．0	79．0	01．0		007	00才p．
$65^{\circ} 0$	L0\％	$78^{\circ} 0$	历T．0	760	LI：0	28.0	91．0	02.97	96I	¢6Itei
$29^{\circ} 0$	90\％	LI＇I	¢ $7^{\circ} 0$	91．	$87^{\circ} 0$	\％［＇I	67°	¢9．88	7切	Zøもqวd
$67^{\circ} 0$	00%	$95^{\circ} 0$	70．0	で0	$80 \cdot 0$	L゙0	$80 \cdot 0$	96．992	8IE	8L®u！
90＊0	00%	$78^{\circ} 0$	200	$\angle 7^{\circ} 0$	王00	$78 \cdot 0$	$80^{\circ} 0$	¢G：89	00I	00t¢олу
LL＇\％	L\＆ 0	$68^{\circ} \mathrm{\nabla}$	$82^{\circ} 0$	［6．${ }^{\circ}$	09°	$89^{\circ} \mathrm{C}$	00%	72．897	00才	00才p．
モ\％＊0	00%	$09^{\circ} 0$	$80 \cdot 0$	$89^{\circ} 0$	0 ${ }^{\circ} 0$	$87^{\circ} 0$	80°	66.29	96I	c6Itei
E8．E	$00 \cdot 0$	$97^{\circ} \mathrm{C}$	69°	$09^{\circ} 9$	89＊${ }^{\text {I }}$	$80^{\circ} \mathrm{\nabla}$	$78^{\circ} 0$	62．7历I	6Tも	zitqod
$69^{\cdot} \mathrm{T}$	80%	$9 L \cdot \%$	¢ $7^{\circ} 0$	69.7	97°	$88^{.}$I	00%	L9＊968	8IE	8L®u！
0L＊0	00%	790	L0．0	¢9＊0	$00 \cdot 0$	$87^{\circ} 0$	00°	2968	00I	00t¢олу
$0 L^{\cdot} \boldsymbol{Z}$	$00 \cdot 0$	$6 \Psi^{\circ} \mathrm{G}$	$0 \%^{\circ} 7$	\＆L： 9	L\＆ 7	96．${ }^{\text {¢ }}$	$\angle E^{\cdot} \cdot$	09．780L	007	00才р．
90\％${ }^{\circ}$	历T ${ }^{\circ} \mathrm{T}$	$97^{\prime} 9$	$78^{\circ} \mathrm{Z}$	07．9	06.7	$66^{\circ} \mathrm{G}$	$92 \cdot \mathrm{~T}$	8L．89I	96I	c6Ite．
$87^{\circ} \mathrm{T}$	$\boldsymbol{T} \cdot \boldsymbol{\square}$	$98 \cdot 9$	$79^{\circ} \mathrm{Z}$	$95^{\circ} \mathrm{L}$	$62^{\circ} \mathrm{T}$	$69^{\circ} 9$	$77^{\circ} \mathrm{\square}$	¢0．$¢ 78$		67tqod
$\angle I^{\circ} \mathrm{E}$		90.7	ZI．0	化も	00%	$72 \cdot 8$	㕵 1	71．6゙88	8IE	8L®u！
ct．${ }^{\text {I }}$	ZI．0	L8．${ }^{\text {I }}$	LI0	\＆ $8^{\text {I }}$ I	80%	L8． I	$77^{\circ} 0$	¢069	00I	00t¢олу
$70 \cdot 0=$ у оппел дејләл										
NUd\％	gCd\％	NTC\％	GUd\％	NTd\％	g ${ }^{\text {d }}$ \％	WCd²	GGd\％			
VOSゅ		НУТ		uорuеу		uо！̣，ıәsu！mopury		${ }^{7 d o} T$	${ }^{3} N$	səวurłsu！dSLAB

CETSP instances	N_{c}		$L_{\text {opt }}$	Simplified			Precomputed	
				\%PDB	\%PDM		\%PDB	\%PDM
bubbles1	37	$\mathbf{3 4 9 . 1 3}$	$\mathbf{0 . 0 0}$	0.01		0.00	$\mathbf{0 . 0 0}$	
bubbles2	77	$\mathbf{4 2 8 . 2 8}$	0.00	0.12		$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 9}$	
bubbles3	127	$\mathbf{5 2 9 . 9 6}$	$\mathbf{0 . 0 0}$	$\mathbf{0 . 1 3}$		0.00	0.14	
bubbles4	185	$\mathbf{8 0 2 . 7 6}$	$\mathbf{0 . 0 0}$	0.61		0.07	$\mathbf{0 . 5 8}$	
bubbles5	251	$\mathbf{1 0 4 0 . 5 4}$	$\mathbf{0 . 0 0}$	$\mathbf{3 . 8 5}$		1.02	3.87	
bubbles6	325	$\mathbf{1 2 5 4 . 6 1}$	2.18	$\mathbf{7 . 7 5}$		$\mathbf{0 . 0 0}$	7.76	
bubbles7	407	$\mathbf{1 6 2 2 . 9 9}$	$\mathbf{0 . 0 0}$	1.94		0.19	$\mathbf{1 . 9 2}$	
bubbles8	497	$\mathbf{1 9 6 4 . 6 8}$	0.28	$\mathbf{1 . 4 7}$		$\mathbf{0 . 0 0}$	1.56	
bubbles9	595	$\mathbf{2 2 8 3 . 4 1}$	$\mathbf{0 . 0 0}$	3.24		0.36	$\mathbf{3 . 1 0}$	
chaoSingleDep	201	1039.61	0.00	1.09		$\mathbf{0 . 0 0}$	$\mathbf{1 . 0 8}$	
concentricCircles1	17	$\mathbf{5 3 . 1 6}$	$\mathbf{0 . 0 0}$	0.04		0.00	$\mathbf{0 . 0 3}$	
concentricCircles2	37	$\mathbf{1 5 3 . 1 3}$	0.00	1.02		$\mathbf{0 . 0 0}$	$\mathbf{0 . 9 0}$	
concentricCircles3	61	$\mathbf{2 7 0 . 3 2}$	$\mathbf{0 . 0 0}$	0.88		0.04	$\mathbf{0 . 8 5}$	
concentricCircles4	105	$\mathbf{4 5 2 . 6 8}$	$\mathbf{0 . 0 0}$	$\mathbf{0 . 7 8}$		0.17	0.84	
concentricCircles5	149	$\mathbf{6 4 4 . 7 3}$	$\mathbf{0 . 0 0}$	2.19		0.51	$\mathbf{2 . 1 3}$	
rotatingDiamonds1	21	$\mathbf{3 2 . 3 9}$	0.00	0.00		$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$	
rotatingDiamonds2	61	$\mathbf{1 4 0 . 4 8}$	0.00	$\mathbf{0 . 1 9}$		$\mathbf{0 . 0 0}$	0.29	
rotatingDiamonds3	181	$\mathbf{3 8 0 . 8 8}$	$\mathbf{0 . 0 0}$	0.28		0.00	$\mathbf{0 . 2 5}$	
rotatingDiamonds4	321	770.66	0.02	$\mathbf{2 . 8 5}$		$\mathbf{0 . 0 0}$	2.89	
rotatingDiamonds5	681	1510.75	0.03	1.22	$\mathbf{0 . 0 1}$	$\mathbf{0 . 9 9}$		
team1_100	101	$\mathbf{3 0 7 . 3 4}$	$\mathbf{0 . 0 0}$	$\mathbf{0 . 1 2}$		0.00	0.14	
team2_200	201	$\mathbf{2 4 6 . 6 8}$	$\mathbf{0 . 0 0}$	0.17		0.00	$\mathbf{0 . 1 4}$	
team3_300	301	$\mathbf{4 6 2 . 3 5}$	$\mathbf{0 . 0 0}$	$\mathbf{4 . 5 6}$		0.28	4.74	
team5_499	500	702.82	$\mathbf{0 . 8 6}$	$\mathbf{2 . 6 8}$		0.96	2.71	
team6_500	501	225.22	$\mathbf{0 . 0 5}$	$\mathbf{0 . 4 6}$		0.61	0.61	

Table B.9: Comparison of two types of PCP solver as a part of GLNS-CETSP on found results by GLNS-CETSP algorithm with GSOA initialization heuristic. The first one is without precomputation Simplified and the second one is with table of precomputed values Precomputed. Instances consisting of intersected circles with equal-sized radii.

CETSP instances	N_{c}	Simplified	Precomputed
		$\mathrm{T}[\mathrm{s}]$	$\mathrm{T}[\mathrm{s}]$
bubbles1	37	0.007	0.008
bubbles2	77	0.030	0.027
bubbles3	127	0.120	0.133
bubbles4	185	0.333	0.379
bubbles5	251	0.844	0.969
bubbles6	325	1.984	2.436
bubbles7	407	4.471	5.228
bubbles8	497	9.561	9.307
bubbles9	595	19.957	20.434
chaoSingleDep	201	0.331	0.368
concentricCircles1	17	0.002	0.002
concentricCircles2	37	0.007	0.008
concentricCircles3	61	0.018	0.021
concentricCircles4	105	0.072	0.082
concentricCircles5	149	0.154	0.153
rotatingDiamonds1	21	0.003	0.003
rotatingDiamonds2	61	0.016	0.022
rotatingDiamonds3	181	0.248	0.290
rotatingDiamonds4	321	1.502	1.798
rotatingDiamonds5	681	24.159	24.705
team1_100	101	0.069	0.065
team2_200	201	0.882	0.866
team3_300	301	1.779	1.674
team5_499	500	8.664	8.769
team6_500	501	39.053	21.007

Table B.10: Comparison of two types of PCP solver as a part of GLNS-CETSP on computational time of GLNS-CETSP. The first one is without precomputation Simplified and the second one is with table of precomputed values Precomputed. Instances consisting of intersected circles with equal-sized radii.

CETSP instances	N_{c}	$L_{\text {opt }}$		Simplified			Precomputed	
				\%PDB	\%PDM		\%PDB	\%PDM
d493rdmRad	493	$\mathbf{1 3 4 . 2 4}$	0.01	1.39		$\mathbf{0 . 0 0}$	$\mathbf{1 . 3 8}$	
kroD100rdmRad	100	141.84	$\mathbf{0 . 0 4}$	2.31		0.11	$\mathbf{2 . 2 3}$	
lin318rdmRad	318	$\mathbf{2 0 4 7 . 1 1}$	1.52	5.58		$\mathbf{0 . 0 0}$	$\mathbf{5 . 1 6}$	
pcb442rdmRad	442	$\mathbf{2 1 9 . 5 6}$	0.07	2.98		$\mathbf{0 . 0 0}$	$\mathbf{2 . 8 3}$	
rat195rdmRad	195	$\mathbf{6 8 . 2 2}$	0.00	0.08		$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 6}$	
rd400rdmRad	400	1252.38	1.15	$\mathbf{2 . 9 3}$		$\mathbf{0 . 6 2}$	2.94	
team1_100rdmRad	101	$\mathbf{3 8 8 . 5 4}$	$\mathbf{0 . 0 0}$	1.95		0.00	$\mathbf{1 . 7 3}$	
team2_200rdmRad	201	$\mathbf{6 1 4 . 2 6}$	0.10	$\mathbf{1 . 8 9}$		$\mathbf{0 . 0 0}$	2.25	
team3_300rdmRad	301	$\mathbf{3 7 8 . 0 9}$	$\mathbf{0 . 0 0}$	$\mathbf{2 . 5 8}$		0.01	2.82	
team5_499rdmRad	500	$\mathbf{4 4 6 . 1 9}$	0.00	$\mathbf{1 . 4 2}$		$\mathbf{0 . 0 0}$	1.45	
team6_500rdmRad	501	$\mathbf{6 2 4 . 0 1}$	0.45	3.87		$\mathbf{0 . 0 0}$	$\mathbf{3 . 3 4}$	

Table B.11: Comparison of two types of PCP solver as a part of GLNS-CETSP on found results by GLNS-CETSP algorithm with GSOA initialization heuristic. The first one is without precomputation Simplified and the second one is with table of precomputed values Precomputed. Instances consisting of intersected circles with arbitrary radii.

CETSP instances	N_{c}	Simplified	Precomputed
		$\mathrm{T}[\mathrm{s}]$	$\mathrm{T}[\mathrm{s}]$
d493rdmRad	493	26.458	18.868
kroD100rdmRad	100	0.051	0.054
lin318rdmRad	318	2.358	2.407
pcb442rdmRad	442	7.419	8.096
rat195rdmRad	195	1.301	0.855
rd400rdmRad	400	4.875	5.409
team1_100rdmRad	101	0.056	0.068
team2_200rdmRad	201	0.419	0.454
team3_300rdmRad	301	4.124	2.833
team5_499rdmRad	500	19.611	12.159
team6_500rdmRad	501	13.228	11.633

Table B.12: Comparison of two types of PCP solver as a part of GLNS-CETSP on computational time of GLNS-CETSP. The first one is without precomputation Simplified and the second one is with table of precomputed values Precomputed. Instances consisting of intersected circles with arbitrary radii.

CETSP instances	N_{c}		$L_{\text {opt }}$		Simplified			Precomputed	
			\%PDB	\%PDM		$\% \mathrm{PDB}$	\%PDM		
jari-huge100	100	$\mathbf{2 2 4 . 9 0}$	$\mathbf{0 . 0 0}$	1.99		0.21	$\mathbf{1 . 9 5}$		
jari-huge200	200	$\mathbf{3 0 4 . 8 6}$	$\mathbf{0 . 0 0}$	$\mathbf{1 . 9 8}$		0.22	2.20		
jari-huge400	400	$\mathbf{4 1 2 . 9 3}$	0.21	$\mathbf{1 . 7 7}$		$\mathbf{0 . 0 0}$	1.83		
jari-huge50	50	$\mathbf{1 5 6 . 3 1}$	$\mathbf{0 . 0 0}$	1.70		0.00	$\mathbf{1 . 6 6}$		
large100	100	$\mathbf{3 6 0 . 5 1}$	0.43	2.60		$\mathbf{0 . 0 0}$	$\mathbf{2 . 5 9}$		
large200	200	$\mathbf{4 9 7 . 0 2}$	0.14	$\mathbf{2 . 6 7}$		$\mathbf{0 . 0 0}$	2.82		
large400	400	$\mathbf{6 6 6 . 0 1}$	$\mathbf{0 . 0 0}$	3.20		1.02	$\mathbf{3 . 1 0}$		
large50	50	$\mathbf{2 7 2 . 9 8}$	$\mathbf{0 . 0 0}$	$\mathbf{0 . 4 5}$		0.06	0.65		
potholes100	100	$\mathbf{2 3 0 . 3 4}$	$\mathbf{0 . 0 0}$	3.00		0.03	$\mathbf{2 . 9 8}$		
potholes200	200	$\mathbf{2 8 0 . 7 0}$	$\mathbf{0 . 0 0}$	$\mathbf{3 . 0 4}$		0.15	3.26		
potholes400	400	$\mathbf{3 9 2 . 5 5}$	$\mathbf{0 . 0 0}$	$\mathbf{1 . 8 8}$		0.28	1.89		
potholes50	50	$\mathbf{1 6 9 . 6 8}$	0.29	$\mathbf{1 . 6 1}$	$\mathbf{0 . 0 0}$	1.72			
warehouse100	100	$\mathbf{1 9 9 . 5 6}$	0.48	$\mathbf{2 . 3 0}$		$\mathbf{0 . 0 0}$	2.33		
warehouse200	200	$\mathbf{2 6 6 . 7 5}$	$\mathbf{0 . 0 0}$	$\mathbf{2 . 3 5}$		0.03	2.37		
warehouse400	400	$\mathbf{3 5 9 . 9 1}$	0.70	2.97		$\mathbf{0 . 0 0}$	$\mathbf{2 . 7 3}$		
warehouse50	50	$\mathbf{1 4 6 . 0 1}$	$\mathbf{0 . 0 0}$	$\mathbf{1 . 2 9}$		0.79	1.34		

Table B.13: Comparison of two types of PCP solver as a part of GLNS-CETSP on found results by GLNS-CETSP algorithm with GSOA initialization heuristic. The first one is without precomputation Simplified and the second one is with table of precomputed values Precomputed. Instances consisting of disjoint circles with equal-sized radii.

CETSP instances	N_{c}	Simplified		
		Precomputed		
jari-huge100	100	0.053		$\mathrm{~T}[\mathrm{~s}]$
jari-huge200	200	0.401		$\mathbf{0 . 0 5 0}$
jari-huge400	400	$\mathbf{4 . 7 5 9}$		5.062
jari-huge50	50	0.011		$\mathbf{0 . 0 1 1}$
large100	100	$\mathbf{0 . 0 4 8}$		0.051
large200	200	$\mathbf{0 . 3 7 3}$		0.429
large400	400	$\mathbf{4 . 4 6 3}$		5.557
large50	50	$\mathbf{0 . 0 0 9}$		0.011
potholes100	100	$\mathbf{0 . 0 4 6}$	0.051	
potholes200	200	$\mathbf{0 . 3 6 8}$	0.444	
potholes400	400	$\mathbf{4 . 5 8 0}$	5.106	
potholes50	50	$\mathbf{0 . 0 0 8}$	0.010	
warehouse100	100	$\mathbf{0 . 0 4 9}$	0.053	
warehouse200	200	$\mathbf{0 . 3 9 8}$	0.417	
warehouse400	400	$\mathbf{4 . 4 3 0}$	5.260	
warehouse50	50	$\mathbf{0 . 0 0 9}$	0.011	

Table B.14: Comparison of two types of PCP solver as a part of GLNS-CETSP on computational time of GLNS-CETSP. The first one is without precomputation Simplified and the second one is with table of precomputed values Precomputed. Instances consisting of disjoint circles with equal-sized radii.

CETSP instances	N_{c}	$L_{o p t}$	Simplified		Precomputed	
			\%PDB	\%PDM	\%PDB	\%PDM
jari-huge100rdmRad	100	225.54	0.24	1.86	0.00	1.95
jari-huge200rdmRad	200	283.24	0.00	1.86	0.34	1.84
jari-huge400rdmRad	400	402.75	0.05	1.78	0.00	1.61
jari-huge50rdmRad	50	158.63	0.00	3.30	0.00	3.02
large100rdmRad	100	368.23	0.00	2.38	0.07	2.50
large200rdmRad	200	498.39	0.00	1.87	0.29	2.03
large400rdmRad	400	660.21	0.00	2.83	0.17	2.66
large50rdmRad	50	290.98	0.00	1.31	0.00	1.42
potholes100rdmRad	100	216.10	0.00	2.00	0.64	2.02
potholes200rdmRad	200	271.52	0.00	3.23	1.05	3.58
potholes400rdmRad	400	388.41	0.26	2.11	0.00	1.90
potholes50rdmRad	50	154.54	0.00	1.35	0.00	1.40
warehouse100rdmRad	100	196.55	0.31	2.96	0.00	3.21
warehouse200rdmRad	200	268.86	0.19	2.33	0.00	2.44
warehouse400rdmRad	400	355.87	0.33	2.86	0.00	2.95
warehouse50rdmRad	50	156.60	0.00	0.59	0.03	0.69

Table B.15: Comparison of two types of PCP solver as a part of GLNS-CETSP on found results by GLNS-CETSP algorithm with GSOA initialization heuristic. The first one is without precomputation Simplified and the second one is with table of precomputed values Precomputed. Instances consisting of disjoint circles with arbitrary radii.

CETSP instances	N_{c}	Simplified		
		Precomputed		
jari-huge100rdmRad	100	$\mathbf{0 . 0 5 0}$		0.052
jari-huge200rdmRad	200	0.380		$\mathbf{0 . 3 7 5}$
jari-huge400rdmRad	400	$\mathbf{4 . 2 8 0}$		5.121
jari-huge50rdmRad	50	$\mathbf{0 . 0 0 9}$		0.010
large100rdmRad	100	$\mathbf{0 . 0 4 8}$		0.052
large200rdmRad	200	$\mathbf{0 . 3 8 7}$		0.461
large400rdmRad	400	$\mathbf{4 . 2 5 9}$		5.203
large50rdmRad	50	$\mathbf{0 . 0 1 0}$		0.011
potholes100rdmRad	100	$\mathbf{0 . 0 4 5}$		0.055
potholes200rdmRad	200	$\mathbf{0 . 4 0 3}$		0.449
potholes400rdmRad	400	$\mathbf{4 . 6 8 3}$		5.191
potholes50rdmRad	50	$\mathbf{0 . 0 0 9}$	0.010	
warehouse100rdmRad	100	$\mathbf{0 . 0 4 6}$		0.049
warehouse200rdmRad	200	$\mathbf{0 . 3 7 2}$		0.436
warehouse400rdmRad	400	$\mathbf{4 . 2 7 0}$		4.964
warehouse50rdmRad	50	$\mathbf{0 . 0 0 9}$	0.010	

Table B.16: Comparison of two types of PCP solver as a part of GLNS-CETSP on computational time of GLNS-CETSP. The first one is without precomputation Simplified and the second one is with table of precomputed values Precomputed. Instances consisting of disjoint circles with arbitrary radii.

$78 \cdot 8$	¢ L° ¢	$90 \cdot 80$ I	87： 26	$97^{\circ} 0$	¢0\％	$00 \cdot 0$		L09	
¢ $¢ 9$	$\angle 6.7$	¢6 ${ }^{\circ}$	$0 \varepsilon^{\cdot}$ I	$89^{\circ} \mathbf{Z}$	98°	$00^{\circ} 0$	78．702	009	$66 \square^{-}$çurəz
$90^{\circ} \mathrm{G}$	79\％	$98^{\circ} \mathrm{G}$	$76 \cdot 8$	$80^{\circ} \boldsymbol{Z}$	00%	7，${ }^{\circ}$	89.029	L07	007 ¢Шшеәд
70．01	98.9	$6 L^{\circ} 8$	¢ 9°	99．${ }^{\text {T }}$	$00 \cdot 0$	78.0	98．797	L0\＆	008^{-1} ¢ひеәд
$87^{\circ} \mathrm{E}$	$9 L^{\circ} \mathrm{Z}$	$97 \cdot 97$	$6 \mathrm{I}^{\circ} \mathrm{G}$ \％	LI．0	00%	00.0	89＊97\％	L0\％	
$\angle L \cdot 7$	07＇	¢9＇\％	あ\％＇\％	$\boldsymbol{Z I} 0$	00%	00°	7¢ 208	I0I	001 ${ }^{\text {－}}$［weə7
$L E^{\circ} \mathrm{GI}$	$69 \cdot 7$	98．	ZI．0	$\boldsymbol{Z F} \cdot \mathrm{I}$	80%	$00 \cdot 0$	9L0IGI	L89	
¢0 6	［ ${ }^{\circ}$ I	п9＊ $\boldsymbol{7}$	91．0	98°	$70 \cdot 0$	00%	99．0LL	L\％¢	
$78 \cdot 7$	$08^{\circ} 0$	\＆\％ 0	$97 \cdot 0$	$87^{\circ} 0$	00%	00°	88．088	L8I	
02．	$77^{\circ} 0$	$07^{\circ} 0$	も $\%^{\circ}$	$6 I^{\circ} 0$	$00 \cdot 0$	00.0	87•0才	L9	
8 ${ }^{\prime}$ I	$97^{\circ} 0$	8 ${ }^{\prime}$ I	9 ${ }^{\circ} 0$	00\％	00%	$00 \cdot 0$	68． $\mathbf{8 E}$	L\％	
¢ $9 . \%$	L9．${ }^{\text {I }}$	¢ ε°	60°	$6 I^{\prime} \boldsymbol{Z}$	$00 \cdot 0$	01．0		67 I	
L6．	$80^{\circ} \mathrm{I}$	$78^{\circ} 7$	$\angle L O$	81．0	$00 \cdot 0$	68°	89．797	901	
00%	$60^{\circ} \mathrm{I}$	80＇I	$78 \cdot 0$	$88^{\circ} 0$	$00 \cdot 0$	87°	78＊0LZ	L9	
$78 \cdot 7$	$69^{\circ} 0$	¢ 9° I	89°	70＊	00%	00°	\＆İEGT	LE	
06.0	$07^{\circ} 0$	$77^{\circ} 0$	98.0	70\％	$00 \cdot 0$	00°	9I•¢G	LI	
$97 \cdot 9$	70%	ד6．0	$95^{\circ} 0$	$60^{\circ} \mathrm{I}$	00°	$00 \cdot 0$	［96680］	L07	
$67^{\circ} 9$	$67 \cdot 7$	$2 \varepsilon^{\circ} \mathrm{E}$	¢7\％	$\underline{L} \cdot \boldsymbol{\varepsilon}$	00%	$97 \cdot 9$	Lワ・887\％	969	6 səqquq
¢9．$¢$	07．${ }^{\text {I }}$	$69^{\circ} \mathrm{I}$	90°	69．${ }^{\circ}$	$00 \cdot 0$	20.2	69＊Z96I	L67	8səqqunq
\＆L ¢	$10 \cdot 7$	没 7	¢8．0	五6．	00%	$66^{\circ} \mathrm{G}$	66．7Z9I	20才	2 səqquq
91：	96.9	LI＇L	$98^{\circ} 0$	$9 \boldsymbol{7}^{\circ} \mathrm{G}$	00%	68°	96．187I	978	9səqquq
LZ＇9	$\angle L T$	9t＇t	78.1	$98^{\circ} \mathrm{E}$	00%	$60^{\circ} 7$	ØG．0ヵ0I	L9\％	gsəqqquq
69°	$\angle F^{\circ} \mathrm{I}$	¢9．7	76．${ }^{\text {I }}$	L9．0	00%	$88^{\circ} \mathrm{E}$	91．708	981	Łsəqqunq
08°	¢ $7^{\circ} 0$	$\angle E^{\circ} 0$	08°	\＆${ }^{\circ} 0$	$00 \cdot 0$	$9 L^{\circ} 0$	96．67¢	LZI	¢səqqunq
［ $8^{\circ} \mathrm{I}$	76.0	06°	LLO	$\boldsymbol{Z I} 0$	$00 \cdot 0$	00.0	87＊87	LL	\％səqquq
$9 L^{\circ} 0$	$6 L^{\circ} 0$	切0	$77^{\circ} 0$	L0．0	00%	00.0	\＆I•6も¢	28	［səqqquq
L\＆＇ZI	208	78.69	L9：99	$L E^{\circ} \mathcal{E}$	00%	98.9	69＊9LE	L00I	000Isnuoq
WCd\％	gণd\％	NGd\％	g ${ }^{\text {d }}$ \％	WUd\％	gளd\％	gளd\％			
VOSゆ		dSL\－SNTゆ		dSLAD－SNTわ		7ZS	${ }^{7 d o} T$	${ }^{3} N$	səวuеұsu！dSLİ

CETSP instances	N_{c}	SZ2	GLNS-CETSP	GLNS-GTSP	GSOA
		$\mathrm{T}[\mathrm{s}]$	$\mathrm{T}[\mathrm{s}]$	$\mathrm{T}[\mathrm{s}]$	T[s]
bonus1000	1001	2.426	277.887	1075.338	0.880
bubbles1	37	0.043	0.007	0.023	0.002
bubbles2	77	1.329	0.030	0.169	0.007
bubbles3	127	0.535	0.120	0.758	0.018
bubbles4	185	0.387	0.333	2.186	0.041
bubbles5	251	2.062	0.844	5.796	0.073
bubbles6	325	0.680	1.984	14.302	0.120
bubbles7	407	1.117	4.471	30.433	0.190
bubbles8	497	1.469	9.904	58.793	0.292
bubbles9	595	2.864	19.415	117.254	0.423
chaoSingleDep	201	0.207	0.331	3.388	0.049
concentricCircles1	17	0.028	0.002	0.004	0.001
concentricCircles2	37	0.059	0.007	0.023	0.003
concentricCircles3	61	0.062	0.018	0.095	0.007
concentricCircles4	105	0.137	0.072	0.405	0.019
concentricCircles5	149	0.359	0.154	1.053	0.035
rotatingDiamonds1	21	0.024	0.003	0.006	0.001
rotatingDiamonds2	61	0.070	0.016	0.090	0.006
rotatingDiamonds3	181	0.250	0.248	2.259	0.038
rotatingDiamonds4	321	0.504	1.502	14.705	0.121
rotatingDiamonds5	681	1.344	24.159	205.019	0.465
team1_100	101	0.157	0.069	0.416	0.012
team2_200	201	0.317	0.882	2.955	0.036
team3_300	301	0.555	1.779	10.778	0.089
team4_400	401	0.715	4.798	25.611	0.178
team5_499	500	1.308	8.664	57.685	0.288
team6_500	501	0.543	34.950	61.013	0.196

Table B.18: Comparison of computational times of four algorithms (SZ2, GLNSCETSP, GLNS-GTSP, GSOA). Instances consisting of intersected circles with equal-sized radii. The shortest computational time for a given instance is highlighted
best known solution $\left(L_{\text {opt }}\right)$ ，the length is highlighted in $L_{\text {opt }}$ column．

$\angle L 9$	81＇¢	L6．6	$87 \cdot 2$	9 ${ }^{\circ} \mathrm{E}$	00%	67•979	LOG	
76．	$6 L^{\circ} \mathrm{Z}$	82．98	90.88	$\boldsymbol{Z}{ }^{\circ} \mathrm{I}$	$00^{\circ} 0$		009	
$09 \cdot 8$	$80^{\circ} \mathrm{I}$	$90^{\circ} \mathrm{E}$	020	$6 \underbrace{\bullet} \boldsymbol{\square}$	00%	86．200	L0才	
¢8．8	［9＇\＆	81＇27	$68^{\circ} \mathrm{\square}$	$89^{\circ} \mathrm{T}$	00%	60．828	T0\＆	речирл00¢ ¢шеәт
$09 \cdot ¢$	$0 \varepsilon^{\cdot}$ I	69.7	$67^{\circ} \mathrm{I}$	81． L	$00^{\circ} 0$	06． 7 ［9	L0\％	
79＊	$99^{\circ} \mathrm{E}$	$9 \chi^{\circ} \mathrm{T}$	97^{\prime} I	96 ${ }^{\circ} \mathrm{I}$	$00^{\circ} 0$	¢9．888	L0I	
$00 \cdot$ 万	顽 7	$2 E^{\circ} \mathrm{E}$	L8．${ }^{\text {I }}$	$86^{\circ} \boldsymbol{Z}$	9I•t	88．797T	007	реуирх00пр．
¢ $\%$ \％	$6 L^{\circ} 0$	$67 \cdot 86$	87： 6	80\％	$00^{\circ} 0$	7\％＊89	96I	речиupig6təex
$00 \cdot 9$	$20 \cdot 8$	［ $8 \cdot 2$	$79^{\circ} \mathrm{G}$	L6． 7	$00^{\circ} 0$	GL．6LZ	$77 \square$	резupizttqod
$08 \cdot 8$	76．${ }^{\text {I }}$	79.2	$\angle 6^{\circ} \mathrm{F}$	00 ®	$00^{\circ} 0$	87：8L0才	8IE	речихиятеи！
$68^{\circ} \mathrm{E}$	$79^{\circ} 7$	$\varepsilon ¢ \cdot 8$	$78^{\circ} 0$	L\＆${ }^{\circ}$	70\％	78． 1 切	00I	
$67^{\circ} 6$		Ш6．$¢ ¢$	97＊0¢	78 ${ }^{\circ}$	$00^{\circ} 0$	¢6．089	000I	речихт000t！sp
7\％＇	$\varepsilon \%^{\prime} \%$	切もて	\＆6．LZ	$88^{\circ} \mathrm{I}$	$00^{\circ} 0$	9\％＇tEI	\＆67	речирıв6tр
8L｀9	$67^{\circ} \mathrm{E}$	77：8	$29^{\circ} 9$	EL＇Z	$00^{\circ} 0$	$88 \cdot 776$	L00I	речuрх000Isnuoq
NUd\％	g ${ }^{\text {d }}$ \％	NUd\％	\＆Gd\％	NUd\％	\＆Gd\％			
VOSゆ		dSLD－SNTわ		dSLGO－SNT		${ }^{7 \text { do }}$ T	${ }^{3} N$	

CETSP instances	N_{c}	GLNS-CETSP	GLNS-GTSP	GSOA
		$\mathrm{T}[\mathrm{s}]$	T[s]	T[s]
bonus1000rdmRad	1001	222.364	880.681	1.090
d493rdmRad	493	26.458	58.243	0.205
dsj1000rdmRad	1000	289.768	999.042	0.937
kroD100rdmRad	100	0.051	0.346	0.014
lin318rdmRad	318	2.358	12.129	0.101
pcb442rdmRad	442	7.419	38.461	0.189
rat195rdmRad	195	1.301	2.871	0.024
rd400rdmRad	400	4.875	18.537	0.244
team1_100rdmRad	101	0.056	0.368	0.013
team2_200rdmRad	201	0.419	2.753	0.052
team3_300rdmRad	301	4.124	10.784	0.077
team4_400rdmRad	401	4.666	20.619	0.229
team5_499rdmRad	500	19.611	63.823	0.204
team6_500rdmRad	501	14.939	60.647	0.242

Table B.20: Comparison of computational times of three algorithms (GLNSCETSP, GLNS-GTSP, GSOA). Instances consisting of intersected circles with arbitrary radii. The shortest computational time for a given instance is highlighted.
the solution is better of equal to the best known solution $\left(L_{o p t}\right)$ ，the length is highlighted in $L_{\text {opt }}$ column．

8［ 9	¢0．$¢$	26.06	9T「28	¢ $\bullet^{\circ} 0$	800	00%	モ．${ }^{\circ} \mathrm{\square} \%$	007	$00 \pm$ рл
［ヵ\％$¢$	81 ${ }^{\circ}$	$99^{\circ} 69$	88.29	$65^{\circ} 0$	L0．0	$00^{\circ} 0$	$00^{\circ} \mathrm{CD}$	96I	96I7ei
89^{9}	$79^{\circ} 7$	98．96	07．06	$29^{\circ} 0$	900	00%	¢ $9 \cdot 88$	7切	Zппqวd
89 万	［I＇\％	7\％＇69	$97 \cdot 79$	$67^{\circ} 0$	$00^{\circ} 0$	00%	96.924	8IE	8L¢U！
L $7 \cdot \square$	66°	L $7 \cdot 87$	LI＇97	90＊0	00%	00°		00I	00IGолу
㖴0T	8I．9	8 ® $^{\circ} \mathrm{E}$ ¢	L9．87\％	0¢＇tI	LI＇L	00%	9666I	000I	000L ${ }^{\text {¢ }}$ ¢p
$\mathbf{9 8} \cdot \mathbf{Z}$	$9 \nabla^{\circ} 0$	97．もLI	78．0II	¢9．8	$68 \cdot 8$	$00^{\circ} 0$	92．69	\＆67	\＆67p
$0 \varepsilon^{*} 0=$ ч опұел дејләл									
L9＊9	E9 ${ }^{\circ}$	$77^{\prime} 7 \mathrm{~L}$	\＆6．6	$\boldsymbol{9} \boldsymbol{7}^{\circ} \boldsymbol{\sigma}$	00%	侜 7	GI•G97	007	00才p．
$99^{\circ} \mathrm{E}$	$69^{\circ} \mathrm{I}$	0才，8	$87^{\circ} \mathrm{L}$	¢7＊0	$00^{\circ} 0$	䧍0	66.29	96I	96I7e．
$87^{6} 6$	$02^{\circ} \mathrm{G}$	86.9 ［	$60^{\circ} \mathrm{EL}$	E8．E	00%	7T｀$¢$	62．7历T	$7 ⿰ 丿 ⿱ 二 ⿺ 𠃊 ⿻ 丷 木 斤$	zriqud
¢ $¢ \cdot 9$	$70 \cdot 8$	76.81	80＇IL	99．${ }^{\circ}$	00%	68°	20．968	8IE	8LEu！
79． 7	历I＇I	$\mathrm{c}^{\circ} \mathrm{E}$	$87^{\circ} \mathrm{E}$	0L＊0	00%	$00^{\circ} 0$	29.68	00I	00LGолу
80．0］	$E \square^{\circ} \mathrm{G}$	80．79	モ¢ 59	历9 ${ }^{\circ} 0$	$00 \% 0$	$89^{\circ} 0$	76．828	000L	0001［sp
［L．9	$70 \cdot 7$	$69^{\circ} \mathrm{LE}$	80．0¢	$89^{\circ} 0$	00%	76.0	08．00工	¢67	\＆67p
$0 \Psi^{\circ} 0=$ ч опұел dејләл									
IG \mathcal{E}	69° I	ZI＇¢	79．${ }^{\circ}$	0 ${ }^{\bullet} \boldsymbol{Z}$	00%	80°	09＊780工	007	00才p．
$87^{\prime \prime}$	$90^{\circ} 7$	LS．E	L0＇I	90\％${ }^{\circ}$		$00 \cdot 0$	8L－89L	96I	96L7es
$28^{\circ} 9$	$90^{\circ} \mathrm{F}$	L9＇t	［8．7	87° ¢	79． 7	$00^{\circ} 0$	¢0．$¢ 78$	7切	zıtqod
L2．7	¢ $7^{\circ} 7$	98．7	09＊0	99＊\％	俑0	$00^{\circ} 0$	L¢ ¢ ¢987	8LE	8LEU！
$89^{\circ} 7$	86.0	$7 \mathcal{C}^{\cdot}$［	$77^{\circ} 0$	GI•T	ZI．0	$00^{\circ} 0$	9069L	00I	00LGолу
$20 \cdot 7$	$6 L^{\prime} \%$	$\pm \mathcal{E}^{\circ} \mathrm{G}$	0才，${ }^{\text {® }}$	$\angle 7^{\circ} \mathrm{I}$	$00 \cdot 0$	$28^{\circ} \mathrm{T}$	89．8L6	000］	000L¢sp
$97^{\circ} 7$	$67^{\circ} \mathrm{I}$	96.7	0 ${ }^{\prime}$［	$90^{\circ} \mathbf{Z}$	$00 \cdot 0$	汒 0	0I． 707	¢67	\＆67p
$70 \cdot 0=$ y о！ұел dејләл \mathbf{O}									
WUd\％	GGd\％	WUd\％	GGd\％	NUd\％	GUd\％	g ${ }^{\text {d }}$ \％			
VOSn		dSLD－SNTゆ		dSLHD－SNTV		7ZS	${ }^{7 \text { do }}$ T	${ }^{5} N$	səวuセłSU！dSLHD

CETSP instances	N_{c}	SZ2	GLNS-CETSP	GLNS-GTSP	GSOA
		T[s]	$\mathrm{T}[\mathrm{s}]$	$\mathrm{T}[\mathrm{s}]$	$\mathrm{T}[\mathrm{s}]$
Overlap ratio $\mathrm{R}=0.02$					
d493	493	1.262	9.369	53.819	0.274
dsj1000	1000	4.598	202.530	939.654	1.209
kroD100	100	0.148	0.052	0.335	0.015
lin318	318	0.739	1.856	10.598	0.137
pcb442	442	0.723	6.151	30.848	0.273
rat195	195	0.270	0.344	2.187	0.054
rd400	400	0.910	4.562	19.993	0.229
Overlap ratio $\mathrm{R}=0.10$					
d493	493	0.891	21.383	65.101	0.200
dsj1000	1000	2.329	251.683	1099.317	0.873
kroD100	100	0.125	0.064	0.405	0.011
lin318	318	0.429	2.179	13.737	0.090
pcb442	442	0.797	7.251	39.007	0.171
rat195	195	0.227	0.618	2.888	0.034
rd400	400	0.399	4.656	29.454	0.144
Overlap ratio $\mathrm{R}=0.30$					
d493	493	0.340	29.151	55.459	0.097
dsj1000	1000	1.301	660.775	837.807	0.884
kroD100	100	0.067	0.131	0.395	0.007
lin318	318	0.297	7.091	11.843	0.073
pcb442	442	0.359	23.329	34.416	0.141
rat195	195	0.168	1.056	2.635	0.024
rd400	400	0.433	17.674	24.212	0.123

Table B.22: Comparison of computational times of three algorithms (GLNSCETSP, GLNS-GTSP, GSOA). Instances contain only the intersected circles and are sorted by three different overlap ratios. The shortest computational time for a given instance is highlighted.

LT $¢$	92.0	$\varepsilon \varepsilon^{\circ} 7$	$\square 7 \%$	$97^{\prime} 7$	00%		007	00才əsпочәлем
$\angle L \cdot 8$	$6 ¢^{\cdot}$ I	GE\％	90.0	98＇Z	00%	9L•99Z	007	00zәлпочәлем
$70 \cdot 8$	¢ 20	99°	0． 0	L8．${ }^{\text {I }}$	00%	89．007	00I	00 ¢әлпочәлем
06.7	GI＇Z	Z $7^{\circ} \mathrm{T}$	88°	$67^{\circ} \mathrm{I}$	00%	L0＊9历I	09	0 оәлsпочәлем
$9 T^{\circ} \mathrm{E}$	$27^{\circ} \mathrm{I}$	历I＇\％	00°	$88^{\circ} \mathrm{T}$	00%	G9．76E	007	
02＇t	I8．${ }^{\text {I }}$	$\mathbf{7 8}{ }^{\circ}$	88°	70．$¢$	00%	02．08Z	007	00\％sәృочұоб
$07^{\circ} 9$		$0 L^{\circ} \mathrm{E}$	$88^{\circ} 0$	$00 \cdot 8$	00%	モ¢•08Z	00I	
¢9 ${ }^{\circ} \mathrm{E}$	\％L^{\prime} I	09^{-1}	$\angle 7^{\circ} 0$	$\boldsymbol{Z E} \cdot \underline{L}$	00%	LI．0LI	09	0¢Səочдо才
$89^{\circ} \mathrm{F}$	90＊${ }^{\text {I }}$	$98 \cdot 8$	¢90	$07^{\circ} \boldsymbol{E}$	00%	L0＊999	00才	
$6 L^{\circ} \mathrm{E}$	$0 \square^{\circ} \mathrm{I}$	$\angle 9^{\circ} 7$	GI＇0	$\boldsymbol{Z C} \cdot \boldsymbol{\square}$	$00^{\circ} 0$	8L＇ $26 \pm$	007	007ә．лхе
LI＇t	¢I＇$\%$	06 ${ }^{\text {I }}$	$97^{\circ} 0$	9 ${ }^{\prime}$ \％	$00^{\circ} 0$	90＊ 798	00I	00โə®．se！
$9 \varepsilon^{\circ} 7$	OL＇L	8 ${ }^{\circ}$ L	98°	G7＊0	00%		0 C	
$\pm 6 \%$	¢ $9^{\circ} \mathrm{I}$	てワ＇	00＊	G．${ }^{\circ}$	$00^{\circ} 0$	18．8Iも	00才	00币ว．8nч－！！xe！
$98 \cdot 8$	LE＇I	$97 \cdot 7$	920	$86^{\circ} \mathrm{I}$	$00 \cdot 0$	98＊五0¢	007	007ə．ภпप－！．．¢！
$97 \cdot ¢$	08°	L\％＇\％	L0．0	$\underline{70} \boldsymbol{\square}$	$00 \cdot 0$	68．⿱一𫝀口を	00I	00 ¢ə．ภnЧ－！．．¢！
$79^{\circ} \mathrm{\nabla}$	$29^{\circ} 7$	08．${ }^{\text {I }}$	$77^{\circ} 0$	02． I	00%	L\＆${ }^{\mathbf{9 G} \text { I }}$	09	0¢ə．ภnч－¢．．xe！
NUd\％	GUd\％	WCd\％	g ${ }^{\text {d }}$ \％	NTd\％	g ${ }^{\text {d }}$ \％			
VOSn		dSLD－SNTD		dSL＇A－SNT		${ }^{7}{ }^{\text {o }}$ T	${ }^{5} N$	səวuełsu！dSLABD

CETSP instances	N_{c}	GLNS-CETSP	GLNS-GTSP	GSOA
		$\mathrm{T}[\mathrm{s}]$	$\mathrm{T}[\mathrm{s}]$	$\mathrm{T}[\mathrm{s}]$
jari-huge50	50	0.011	0.046	0.004
jari-huge100	100	0.053	0.300	0.015
jari-huge200	200	0.401	2.205	0.055
jari-huge400	400	4.759	18.879	0.216
large50	50	0.009	0.044	0.004
large100	100	0.048	0.309	0.014
large200	200	0.373	2.335	0.055
large400	400	4.463	19.671	0.217
potholes50	50	0.008	0.043	0.004
potholes100	100	0.046	0.296	0.015
potholes200	200	0.368	2.280	0.055
potholes400	400	4.580	19.509	0.211
warehouse50	50	0.009	0.044	0.004
warehouse100	100	0.049	0.305	0.015
warehouse200	200	0.398	2.344	0.056
warehouse400	400	4.430	19.710	0.215

Table B.24: Comparison of computational times of three algorithms (GLNSCETSP, GLNS-GTSP, GSOA). Instances contain only the disjointed circles with equal-sized radii. The shortest computational time for a given instance is highlighted.

$9 L^{\prime} \%$	$08^{\circ} 0$	07＇	$67^{\circ} 0$	69＊0	$00^{\circ} 0$	09＊9GI	09	реуиихлояәsпочәлем
L0＇t	97°	$6 \mathrm{I}^{\circ} \mathrm{E}$	70\％ 0	$\boldsymbol{E G} \cdot \boldsymbol{\square}$	00%	70．298	00才	
$\mp 7^{\circ} ¢$	$\angle 9^{\circ} 0$	07°	LE0	历 $\mathrm{C}^{\prime} \boldsymbol{\square}$	00%	L8．697	007	речиирло0zәsпочәлем
$86^{\circ} \mathrm{\square}$	67^{\prime} I	$89 \cdot ¢$	L6．0	¢ $9 \cdot \square$	$00 \cdot 0$	LI•26I	00L	
LE＇T	81．${ }^{\circ}$	$\angle 7^{\circ} \mathrm{I}$	¢ $7^{\circ} 0$	¢8．${ }^{\text {I }}$	$00 \cdot 0$	DG．tGI	09	речиирлояsәгочдоб
89.7	00%	GE 7	L900	98＊${ }^{\text {I }}$	00°	0才＊688	00才	
$\angle 2.7$	L ${ }^{\prime}$ I	26.8	$99^{\circ} 0$	$\boldsymbol{E} \boldsymbol{F}^{\circ} \boldsymbol{E}$	$00 \cdot 0$	Z¢•TLI	007	
$\varepsilon \varepsilon^{\circ} ¢$	LI＇I	钡	¢ $7^{\circ} 0$	$00 \cdot 7$	$00 \cdot 0$	0L•9LZ	00L	
$79 \cdot ¢$	99°	历I＇I	91＊0	L $\underbrace{\prime}$ I	$00^{\circ} 0$	66．067	09	реуирлояә．лег
$09 \cdot ¢$	67^{\cdot} I	$00 \cdot \mathcal{L}$	$6 \mathrm{I}^{\circ} \mathrm{L}$	E8＇\％	00%	LZ＊099	00才	реуирло0ォә．олег
$6 \Psi^{\circ} \mathrm{E}$	$9 \varepsilon^{\prime}$ I	¢ $¢$	$99^{\circ} 0$	L8＇${ }^{\circ}$	$00 \cdot 0$	68＊86才	007	речирло0zә．олег
も9．7	8 ${ }^{\prime}$ I	$L \varepsilon^{\cdot} \boldsymbol{Z}$	$65^{\circ} 0$	$8 \%^{\circ} 7$	$00^{\circ} 0$	\＆${ }^{\prime} 898$	00L	речирлооцә．8．те
glit	¢9．0	LL $\cdot ¢$	LI＇0	$0 \varepsilon^{\cdot} \boldsymbol{E}$	$00 \cdot 0$	89＊89	09	речирлоgə．8nч－！．te！
$09^{\circ} 7$	L2．0	$7 \overbrace{}^{\circ} \mathrm{C}$	72．0	\＆$L^{\circ} \mathrm{T}$	$00 \cdot 0$	26．70才	00才	
$9 \Psi^{\circ} \mathrm{E}$	LG．	96．${ }^{\text {I }}$	历0．0	98＊${ }^{\text {L }}$	$00 \cdot 0$	モZ：887	007	
$\varepsilon \sigma^{\circ} ¢$	97^{\cdot} I	$99^{\circ} \mathrm{I}$	$78 \cdot 0$	79 ${ }^{\text {T}}$	00%	60．97\％	00I	
NQd\％	g ${ }^{\text {d }}$	NTA\％	¢ ${ }^{\text {d }}$ \％	NUd\％	gளd\％			
VOSゆ		dSLD－SNTゆ		dSLHP－SNTわ		${ }^{7}{ }^{\circ}{ }_{T}$ T	${ }^{3} N$	səวuセұsu！dSLAㄱ

CETSP instances	N_{c}	GLNS-CETSP	GLNS-GTSP	GSOA
		$\mathrm{T}[\mathrm{s}]$	$\mathrm{T}[\mathrm{s}]$	T[s]
jari-huge100rdmRad	100	0.050	0.297	0.015
jari-huge200rdmRad	200	0.380	2.302	0.054
jari-huge400rdmRad	400	4.280	19.188	0.215
jari-huge50rdmRad	50	0.009	0.042	0.004
large100rdmRad	100	0.048	0.304	0.014
large200rdmRad	200	0.387	2.384	0.054
large400rdmRad	400	4.259	20.507	0.217
large50rdmRad	50	0.010	0.042	0.004
potholes100rdmRad	100	0.045	0.320	0.015
potholes200rdmRad	200	0.403	2.385	0.054
potholes 400 rdmRad	400	4.683	18.661	0.214
potholes50rdmRad	50	0.009	0.042	0.004
warehouse100rdmRad	100	0.046	0.320	0.015
warehouse200rdmRad	200	0.372	2.304	0.055
warehouse400rdmRad	400	4.270	21.185	0.213
warehouse50rdmRad	50	0.009	0.044	0.004

Table B.26: Comparison of computational times of three algorithms (GLNSCETSP, GLNS-GTSP, GSOA). Instances contain only the disjointed circles with arbitrary radii. The shortest computational time for a given instance is highlighted.
！！pe．．pəz！̣s－［еnbə प＋！̣

09＊${ }^{\circ}$	26.0	78．8	¢I＇$¢$	$97^{\circ} 0$	$80^{\circ} 0$	$77^{\circ} 97 \%$	L09	009 ${ }^{-1}$ 9廿еәд
¢ $\underbrace{\circ}$	L0． 1	¢ $¢ \cdot 9$	26°	$89^{\circ} \mathrm{Z}$	$98^{\circ} 0$	78． 702	009	$66 \square^{-}$¢ひъәд
$07 \cdot 7$	79．0	$90^{\circ} \mathrm{G}$	79\％	$80^{\circ} \mathrm{Z}$	$00^{\circ} 0$	89．029	10才	
$70 \cdot 2$	LI＇t	70．01	98.9	99．${ }^{\text {¢ }}$	$00^{\circ} 0$		L0\＆	
77%	L0．0	$87^{\circ} \mathrm{E}$	GI＇${ }^{\text {c }}$	LI．0	$00 \cdot 0$	89＊9ぁて	L07	
$97^{\circ} 0$	00°	LL＇Z	0\％＇	ZI．0	$00^{\circ} 0$	¢E 20 ¢	L0I	
L゙も开	$87^{\circ} 7$	L \mathcal{E} GI	69°	$\boldsymbol{z F} \cdot \mathrm{L}$	80\％	9L0IGI	L89	
¢8．8	ZI＇I	70.6	［ ${ }^{\text { }}$［	$98^{\circ} \mathrm{Z}$	70\％ 0	99．0L2	LZ8	
L\＆ 7	$98^{\circ} 0$	78．${ }^{\circ}$	08°	$87^{\circ} 0$	00%	88．08\＆	L8I	
L χ^{\prime} I	00°	02．${ }^{\text {I }}$	77°	$6 I^{\circ} 0$	$00^{\circ} 0$	87＊0历T	L9	
$00 \cdot 0$	$00 \cdot 0$	$8 \mathrm{I}^{\prime} \mathrm{L}$	$97^{\circ} 0$	00＊0	00%	$6 \boldsymbol{E}^{\cdot 7 \boldsymbol{Z}}$	L\％	
$07 \cdot 7$	理0	¢ G° ¢	L＇．	$6 I^{\circ} \mathrm{Z}$	$00^{\circ} 0$	\＆ど百9	6 II	
$29^{\circ} 0$	70.0	［6．${ }^{\text {I }}$	$80^{\circ} \mathrm{I}$	810	00%		901	
Z $\mathrm{I}^{\circ} \mathrm{I}$	$9 \mathrm{I}^{\circ} 0$	$00^{\circ} 7$	$60^{\circ} \mathrm{I}$	$88^{\circ} 0$	00%	Z¢．02\％	L9	
26.0	00.0	$78 \cdot 7$	$69^{\circ} 0$	$70^{\circ} \mathrm{I}$	00%	\＆L•EGT	28	
07°	00°	06°	07\％	70\％	$00 \cdot 0$	9 ${ }^{\text {¢ ¢ }}$	LI	
L2＇才	89°	$97 \cdot 9$	70%	$60^{\circ} \mathrm{T}$	$00 \cdot 0$	［9＊680］	L0\％	
$6 \boldsymbol{F}^{\prime} \boldsymbol{E}$	00%	$68^{\circ} \mathrm{G}$	$68 \cdot 7$	L $\varepsilon^{\circ} \mathcal{E}$	60°	\＆\＆＇L87\％	969	6 səqquq
［L． 1	99°	79 $¢$	$07^{\circ} \mathrm{I}$	69^{\cdot} T	$00 \cdot 0$	69＊796	267	8sərqqnq
$70^{\circ} 7$	$87^{\circ} 0$	¢L．$¢$	L0． 7	－6．	$00^{\circ} 0$	66．779	20才	2 səqqqnq
L0 9	cit	9L．	96.9	$\mathcal{C b}^{\circ} \mathrm{C}$	$00 \cdot 0$	96． 587 I	968	9səqqqnq
$66^{\circ} \mathrm{E}$	¢I＇¢	LZ．9	L2＇才	$\mathrm{CB}^{\circ} \mathrm{E}$	00%	も¢•0币0	LG\％	gsprqquq
¢90	L0．0	$69^{\circ} 7$	$\angle 0^{\circ} \mathrm{I}$	L9＊0	$00 \cdot 0$	91•Z08	981	ъsəqqun
$77^{\circ} 0$	$00 \cdot 0$	08°	$87^{\circ} 0$	\＆${ }^{\circ} 0$	$00 \cdot 0$	96．67s	LZI	esprqquq
$28^{\circ} 0$	$00 \cdot 0$	［8．${ }^{\text {I }}$	76．0	ZI．0	$00 \cdot 0$	87＊87才	LL	\％səqqqnq
90°	00°	92.0	$6 \mathrm{I}^{\circ} 0$	L0\％	$00^{\circ} 0$	\＆ $5 \cdot 6 \boldsymbol{6}$ ¢	28	［səqqqnq
$6 \mathrm{I}^{8} 8$	$89^{\circ} \mathrm{T}$	$28^{\circ} 7 \mathrm{I}$	20.8	$L E^{\prime} \mathcal{E}$	$00 \cdot 0$	69．928	L00I	000 Lsnuoq
NOd\％	g ${ }^{\text {d }}$ \％	NTC\％	gTd\％	NTU\％	g ${ }^{\text {d }}$ \％			
$\mathrm{dOL}+\mathrm{VOSD}$				dSLH	SNT	${ }^{7}{ }^{\text {o }}$ T	${ }{ }^{N}$	səวueqsu！dSL＇̧ว

CETSP instances	N_{c}	GLNS-CETSP		GSOA	
		$\mathrm{T}[\mathrm{s}]$	$\mathrm{GSOA}+\mathrm{T}]$	$\mathrm{T}[\mathrm{s}]$	
bonus1000	1001	277.887	$\mathbf{0 . 8 8 0}$	1.000	
bubbles1	37	0.007	$\mathbf{0 . 0 0 2}$	0.003	
bubbles2	77	0.030	$\mathbf{0 . 0 0 7}$	0.008	
bubbles3	127	0.120	$\mathbf{0 . 0 1 8}$	0.021	
bubbles4	185	0.333	$\mathbf{0 . 0 4 1}$	0.046	
bubbles5	251	0.844	$\mathbf{0 . 0 7 3}$	0.081	
bubbles6	325	1.984	$\mathbf{0 . 1 2 0}$	0.131	
bubbles7	407	4.471	$\mathbf{0 . 1 9 0}$	0.216	
bubbles8	497	9.904	$\mathbf{0 . 2 9 2}$	0.333	
bubbles9	595	19.415	$\mathbf{0 . 4 2 3}$	0.456	
chaoSingleDep	201	0.331	$\mathbf{0 . 0 4 9}$	0.059	
concentricCircles1	17	0.002	$\mathbf{0 . 0 0 1}$	0.001	
concentricCircles2	37	0.007	$\mathbf{0 . 0 0 3}$	0.003	
concentricCircles3	61	0.018	$\mathbf{0 . 0 0 7}$	0.008	
concentricCircles4	105	0.072	$\mathbf{0 . 0 1 9}$	0.021	
concentricCircles5	149	0.154	$\mathbf{0 . 0 3 5}$	0.039	
rotatingDiamonds1	21	0.003	$\mathbf{0 . 0 0 1}$	0.001	
rotatingDiamonds2	61	0.016	$\mathbf{0 . 0 0 6}$	0.006	
rotatingDiamonds3	181	0.248	$\mathbf{0 . 0 3 8}$	0.042	
rotatingDiamonds4	321	1.502	$\mathbf{0 . 1 2 1}$	0.135	
rotatingDiamonds5	681	24.159	$\mathbf{0 . 4 6 5}$	0.557	
team1_100	101	0.069	$\mathbf{0 . 0 1 2}$	0.014	
team2_200	201	0.882	$\mathbf{0 . 0 3 6}$	0.044	
team3_300	301	1.779	$\mathbf{0 . 0 8 9}$	0.105	
team4_400	401	4.798	$\mathbf{0 . 1 7 8}$	0.203	
team5_499	500	8.664	$\mathbf{0 . 2 8 8}$	0.324	
team6_500	501	34.950	$\mathbf{0 . 1 9 6}$	0.210	

Table B.28: Comparison of GLNS-CETSP, GSOA and GSOA+TCP algorithms based on the computational time. Instances with intersecting circles with equalsized radii.
！！рет Клетұ！q．те чт！м

$96 \cdot 7$	LI．0	$\angle L .9$	$8 \mathrm{I}^{\circ} \mathrm{E}$	$9 \mathrm{I}^{\circ} \mathrm{E}$	00\％	6z＇979	L09	
ctib	$97^{\circ} 0$	76．	$6 L^{\prime} 7$	$\boldsymbol{Z} \boldsymbol{T}^{\bullet}$ I	$00^{\circ} 0$		009	речирг667 ¢иеәт
$\angle \& \cdot \square$	GI：0	$09 \cdot 8$	$80^{\circ} \mathrm{I}$	$68 \cdot 7$	00%	86．200	L0才	
0才，	80.0	¢8．8	［9＊$¢$	$89^{\circ} \mathrm{Z}$	00%	60＊8L8	L0\＆	речирл00¢ ¢иеәт
97%	01．0	$09^{\circ} \mathrm{E}$	$0 \varepsilon^{\cdot}$ I	82．	$00^{\circ} 0$	06． 719	L0\％	
$6 L^{\prime} 7$	$8 L^{\prime} 7$	79°	$99^{\circ} \mathrm{E}$	96．${ }^{\circ}$	00%	モ．${ }^{\text {－} 888}$	L0I	
$77^{\circ} \mathrm{¢}$	L \mathcal{C}^{\prime} I	$00 \cdot$ ¢	焐 7	$86^{\circ} \mathbf{7}$	9 ${ }^{\circ}$ \％	88．797I	00才	речииро0tрх
¢ $\nabla^{\circ} 7$	90.0	¢ $\% \cdot \%$	$6 L^{\circ} 0$	$80 \cdot 0$	00%	\％$\%$ 89	96I	речиитig6itex
$20 \cdot 8$	790	$00 \cdot 9$	$20 \cdot 8$	L6． 7	00%	G2．6LZ	7Tも	речupaztøqоه
$90 \cdot 9$	无00	$08 \cdot 8$	$76 \cdot$ I	00＊	00%	87•8L0Z	8IE	речúsi8teu！
TL＇\％	76.0	$68 \cdot 8$	79．7	L\＆${ }^{\text {\％}}$	¢0\％		00I	рeyuprootaory
$9 L \cdot 9$	L $\cdot^{\text {I }}$	$67 \cdot 6$	现而	78．${ }^{\circ}$	00%	¢6．089	000I	peyuprooot！sp
$79^{\circ} 7$	$09^{\circ} 0$	て，∇°	\＆$\%$ \％	88^{\cdot} I	00%	ç・もEI	\＆67	речuрıв6才р
$88^{\circ} 7$	$28^{\circ} 0$	8［．9	$67^{\circ} \mathrm{E}$	\＆$L^{\prime} \boldsymbol{Z}$	00%	$88^{\circ} \mathrm{Z历} 6$	L00I	pryuproontsnuoq
NUd\％	gCd\％	NUd\％	g ${ }^{\text {ad\％}}$	WUd\％	GUd\％			
dOL＋	VOS	VO		dSLA	－SNTD	${ }^{7}{ }^{\text {o }}$ T	${ }^{\circ} N$	səวuセłsu！dSLAD

CETSP instances	N_{c}	GLNS-CETSP	GSOA	$\mathrm{GSOA}+\mathrm{TCP}$
		$\mathrm{T}[\mathrm{s}]$	$\mathrm{T}[\mathrm{s}]$	$\mathrm{T}[\mathrm{s}]$
bonus1000rdmRad	1001	222.364	1.090	1.112
d493rdmRad	493	26.458	0.205	0.260
dsj1000rdmRad	1000	289.768	0.937	1.111
kroD100rdmRad	100	0.051	0.014	0.015
lin318rdmRad	318	2.358	0.101	0.138
pcb442rdmRad	442	7.419	0.189	0.218
rat195rdmRad	195	1.301	0.024	0.036
rd400rdmRad	400	4.875	0.244	0.278
team1_100rdmRad	101	0.056	0.013	0.015
team2_200rdmRad	201	0.419	0.052	0.057
team3_300rdmRad	301	4.124	0.077	0.102
team4_400rdmRad	401	4.666	0.229	0.236
team5_499rdmRad	500	19.611	0.204	0.238
team6_500rdmRad	501	14.939	0.242	0.303

Table B.30: Comparison of GLNS-CETSP, GSOA and GSOA+TCP algorithms based on the computational time. Instances with intersecting circles with arbitrary radii.

897	L9．0	$8 \mathrm{I}^{\prime} 9$	80%	¢ \％ 0	80．0	モ8＇も¢\％	00才	$00 \pm$ р．
82．0	¥0．0	L¢＇¢	81＇I	$65^{\circ} 0$	$10 \cdot 0$	$00^{\circ} \mathrm{Gt}$	¢61	96 Lұе．
¢6．${ }^{\text { }}$	26.1	$89^{\circ} 9$	${ }^{29} 7$	29.0	$90 \cdot 0$	¢¢：88	2切	てп¢qวd
L8． 1	$0 \square^{\circ} 0$	89 ¢	LI＇\％	$67 \cdot 0$	00．0	96.92	8t¢	8İUu！
$25^{\circ} 0$	L0．0	LZ\％$\%$	$66^{\circ} 0$	$90 \cdot 0$	$00 \cdot 0$		00 I	00tcoiy
82．98	66.72	切0¢	$8 \mathrm{~L} \cdot 9$	$08^{\circ} \mathrm{tL}$	LI＇L	9666 L	000I	
\＆L＇gI	88.9	$98 . z$	9 c 0	$89^{\circ} 8$	68%	92：69	867	867p
22． 7	¢1．0	L9．9	¢ 9° ¢		$00 \cdot 0$	9T－gSt	00才	00tр．
$87^{\circ} 0$	00°	$99^{\circ} \mathrm{\varepsilon}$	$69^{\circ} \mathrm{I}$	$\pm 7 \cdot 0$	00．0	66.29	961	96 Іұех
$97^{\circ} \mathrm{C}$	LE ${ }^{\circ}$	$8{ }^{\text {¢ }} 6$	$02 \cdot 9$	88． \mathcal{E}	$00 \cdot 0$	62．7ヵT	Z切	\％itqod
¢t．$\%$	$87^{\circ} 0$	モ¢．9	$70 \cdot 8$	99．${ }^{\text {I }}$	$00 \cdot 0$	20．968I	8t¢	8teuti
07．0	$00 \cdot 0$	79.7		0¢．0	00．0	29.68	001	00tcoiv
¢ 9.9	LE 1	¢0\％ 0	$\mathrm{EFO}^{\circ} \mathrm{G}$	$\pm{ }^{\text {¢ }} 0$	$00 \cdot 0$	¢6．8L8	000I	$000 t$ ！${ }^{\text {chp }}$
$88^{\circ} \mathrm{E}$	¢ $2 \cdot 0$	LI＇9	$\pm 0 \%$	$89 \cdot 0$	00．0	08．001	867	86ヶp
$88^{\prime} 7$	$87^{\circ} 0$	$\pm ¢^{\circ} \varepsilon$	69.1	0T＇z	00．0	09．7801	00t	00tp．
76．${ }^{\text {\％}}$	68.0	87^{\prime}	90°	$90^{\circ} \mathrm{E}$	も1．L	82．891	961	96 L7e．
79＇も	$82 \cdot \%$	$28^{\circ} 9$	90°	$85^{\circ} \mathrm{t}$	$\pm \mathrm{T}^{\circ} \mathrm{z}$	¢0＇8\％8	ZTt	てп¢qวd
$60^{\circ} \mathrm{E}$	$99^{\circ} 0$	L2＇も	$80^{\circ} \mathrm{F}$	$99^{\circ} \mathrm{Z}$	切0	L8＇898	8LE	8İu！
¢ $2 \cdot 1$	L\％\％ 0	89.7	86.0		zi．0	9069L	001	00tcoiv
$92^{\circ} \mathrm{I}$	L9．0	20＇t	$61^{\prime} \%$	$2 \boldsymbol{F}^{\circ} \mathrm{T}$	$00 \cdot 0$	89．8L6	000I	000 T ${ }^{\text {csp }}$
$8 \%^{\circ} 7$	00%	$0 \chi^{\prime \prime}$	¢9 ${ }^{\text {I }}$	$6 L^{\prime}$	㕵0	78． 107	¢67	¢6T
$70^{\circ} 0=\mathrm{y}$ опұех dерләл \mathbf{O}								
NGd\％	gad\％	NGd\％	ЄGd\％	NGd\％	Єबd\％			
dOL＋	VOSŋ	VO		dSLA	－SNT	${ }^{\text {foo }}$ T	${ }^{3} \mathrm{~N}$	səวu®łsu！dSLHP

CETSP instances	N_{c}	GLNS-CETSP	GSOA	GSOA + TCP
		$\mathrm{T}[\mathrm{s}]$	$\mathrm{T}[\mathrm{s}]$	$\mathrm{T}[\mathrm{s}]$
Overlap ratio $\mathrm{R}=0.02$				
d493	493	9.369	0.274	0.305
dsj1000	1000	202.530	1.209	1.308
kroD100	100	0.052	0.015	0.017
lin318	318	1.856	0.137	0.152
pcb442	442	6.151	0.273	0.308
rat195	195	0.344	0.054	0.060
rd400	400	4.562	0.229	0.254
Overlap ratio $\mathrm{R}=0.10$				
d493	493	21.383	0.200	0.236
dsj1000	1000	251.683	0.873	0.968
kroD100	100	0.064	0.011	0.012
lin318	318	2.179	0.090	0.107
pcb442	442	7.251	0.171	0.206
rat195	195	0.618	0.034	0.040
rd400	400	4.656	0.144	0.160
Overlap ratio $\mathrm{R}=0.30$				
d493	493	29.151	0.097	0.118
dsj1000	1000	660.775	0.836	0.893
kroD100	100	0.131	0.007	0.010
lin318	318	7.091	0.073	0.092
pcb442	442	23.329	0.141	0.172
rat195	195	1.056	0.024	0.032
rd400	400	17.674	0.123	0.144

Table B.32: Comparison of GLNS-CETSP, GSOA and GSOA+TCP algorithms based on the computational time. Instances with intersecting circles and sorted based on the overlap ratios.

$87^{\circ} 9$	$9 \pm .9$	LS．0TE	$\varepsilon \varepsilon^{\prime} \subseteq$	$87^{\circ} 7$	72：80¢	79．9	$90^{\circ} \mathrm{E}$	60．8L9	9L9 9	80\％ 0	$99^{\circ} 868$	
L2．9	LL．9	87而0¢	$98^{\circ} 9$	LL＇\％	98＊ 167	$67^{\circ} 9$	$92 \cdot \mathrm{C}$	82．687	$79 \cdot 8$	00\％ 6	$67^{\circ} \mathrm{C} 98$	
$99^{\circ} 0$	76．9	L¢＇79\％	$69^{\circ} 0$	LL＇G	9608\％	78.0	91＇万	\＆L＇76¢	$08^{\circ} 0$	¢7＇7I	\＆L＇867	
L20	$88^{\circ} \mathrm{\square}$	29＊987	$89^{\circ} 0$	¢G $¢$	IT｀\％0\％	$68^{\circ} 0$	9 ${ }^{\circ} \mathrm{E}$	79＊LLE	7L0	LI＇9I	16．8も\％	007ұวəธıəұ山！
ZI＇0	8L＇8	［8．981	$60^{\circ} 0$	II＇I	69＊06I	\＆ $1^{\circ} 0$	$66^{\circ} \mathrm{I}$	GT＊20¢	710	9 ${ }^{\circ} 6 \mathrm{~L}$	86.607	речиирл00โłวәsıəди！
$95^{\circ} 0$	9 ${ }^{\circ}$ 万	［9：2LI	$60^{\circ} 0$	$9 T^{\circ} \mathrm{I}$	98．88I	㕵0	$68^{\circ} \mathrm{C}$	70•787	\＆${ }^{\circ} 0$	G0．EI	LG\％LZ	00 โłวəงıəдU！
$80^{\circ} 0$	00\％	06．69I	$70^{\circ} 0$	6I＊0	L9．79I	70．0	\＆6． 7	80•切	$80 \cdot 0$	06.8	L8切	
$80^{\circ} 0$	7L＇I	¢6．88L	$70^{\circ} 0$	6， 0	29．87I	70．0	99＊	70．897	$80^{\circ} 0$	$90^{\circ} \mathrm{E}$	7¢．7ZI	0¢7วәsıəди！
\＆8＇9	$80 \cdot 2$	89．00才	$08^{\cdot} 9$	丞 $¢$	¢0｀988	07＊ 8	LLE	80٪ 289	$9 \square^{\circ} 9$	920］	7İ969	речиирл00бұu！o！s！̣
$79^{\circ} 9$	6I＊8	LİD0才	$00^{\circ} 9$	$70^{\circ} 7$	88：768	L9．9	76．9	6I｀789	$87^{\circ} 9$	87＊8	88.979	00ォ7U！̣O！s！̣
$8 L^{\circ} 0$	86． 2	GG．7IE	LG．0	92.8	焐 727	$29^{\circ} 0$	90．9	91＊6T9	7900	7İIT	76． 298	peyuproozqu！o！s！p
［900	6L：9	7¢ 818	$09^{\circ} 0$	$98^{\circ} 7$	60＊787	92．0	06．9	9．659	$79^{\circ} 0$	LI＇II	67＊988	00Zมu！̣o¢s！p
$60^{\circ} 0$	99＊LI	78.287	20.0	I8．	LZ＇LIZ	$60^{\circ} 0$	69＇万	69．288	$60^{\circ} 0$	9LEL	02：267	peyuprootzu！o！s！̣
$60^{\circ} 0$	$8 ¢^{\circ} 9$	90．887	20.0	砍 \mathcal{E}	68＊L\＆Z	$80^{\circ} 0$	てI＇9	02．tLE	$80^{\circ} 0$	$87^{\circ} \mathrm{EL}$	60.687	00L子U！̣ofsṭ
$70^{\circ} 0$	Ø $9 \cdot 8$	78．69I	$70^{\circ} 0$	97＇I	0¢＊9¢	$80^{\circ} 0$	$78^{\circ} 7$	20．908	$70^{\circ} 0$	80\％ CL	$67^{*} 907$	peyupxogqu！̣o！s！̣
$80^{\circ} 0$	$88^{\prime} 7$	06．89L	L0．0	$67^{\circ} \mathrm{L}$	7L＇ILI	$70^{\circ} 0$	L6．$¢$	08．787	$70 \cdot 0$	\＆L＇G	87＊02I	0g7uỊoโ̣！p
［s］L	NUd\％	${ }^{7 d o} T$	［s］ L	WUd\％	${ }^{7 d o} T$	$[\mathrm{s}]_{\mathrm{L}}$	NUd\％	${ }^{7 d o} T$	［s］L	WUd\％	${ }^{7 \text { do }}$ T	
	әsnoџәли			SәГОЧдOб			ә．¢хе［			ə．ภnч－¢．．x		səวuセłSU！dSL＇AD

Appendix C

Contents of the attached CD

Code
All code implementations
tables .. Continuous tables of results for given version of algorithm report $\ldots \ldots . \ldots$.................. Continuous report of the theses MatlabHelping matlab code to solve the complex equation CETSPFinal implementation of all algorithms Results... All measured results The_Close_Enough_Travelling_Salesman_Problem_in_polygonal_domain.pdf Diploma thesis in pdf format

[^0]:

[^1]:

[^2]: >

[^3]: ${ }^{1}$ Available at https://github.com/stephenlsmith/GLNS.j1
 ${ }^{2}$ Available at http://webhotel4.ruc.dk/~keld/research/LKH/

[^4]: ${ }^{3}$ Available at https://github.com/comrob/gsoa

[^5]: ${ }^{1}$ Available at https://drum.lib.umd.edu/handle/1903/9822

[^6]: ${ }^{2}$ Available at https://www.cpubenchmark.net/singleCompare.php

